Fbxw11 impairs the repopulation capacity of hematopoietic stem/progenitor cells

Stem Cell Research & Therapy - Tập 13 - Trang 1-14 - 2022
Lina Wang1, Yongjun Piao2, Dongyue Zhang1, Wenli Feng1, Chenchen Wang1, Xiaoxi Cui1, Qian Ren1, Xiaofan Zhu1, Guoguang Zheng1
1State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
2School of Medicine, Nankai University, Tianjin, China

Tóm tắt

The ubiquitin–proteasome system plays important roles in maintaining the self-renewal and differentiation of stem and progenitor cells through highly ordered degradation of cellular proteins. Fbxw11, an E3 ligase, participates in many important biological processes by targeting a broad range of proteins. However, its roles in hematopoietic stem/progenitor cells (HSPCs) have not been established. In this study, the effects of Fbxw11 on HSPCs were studied in vitro and in vivo by an overexpression strategy. Real-time PCR was performed to detect the expression of Fbxw11 in hematopoietic subpopulations. Colony-forming assays were performed to evaluate the in vitro function of Fbxw11 on HSPCs. Hoechst 33342 and Ki67 staining was performed to determine the cell-cycle distribution of HSPCs. Competitive transplantation experiments were used to evaluate the effect of Fbxw11 on the reconstitution potential of HSPCs. Single-cell RNA sequencing (scRNA-seq) was employed to reveal the transcriptomic alterations in HSPCs. The expression of Fbxw11 was higher in Lin−c-Kit+Sca-1+ (LSK) cells and myeloid progenitors than in lymphoid progenitors. Fbxw11 played negative roles in colony-forming and quiescence maintenance of HSPCs in vitro. Furthermore, serial competitive transplantation experiments revealed that Fbxw11 impaired the repopulation capacity of HSPCs. The proportion of granulocytes (Gr-1+CD11b+) in the differentiated mature cells was significantly higher than that in the control group, T cells and B cells were lower. Moreover, scRNA-seq revealed seven cell clusters in HSPCs. In addition, Fbxw11 downregulated the expression of Cebpa, Myc and Arid5b, which are significant regulators of HSPC activity, in most cell clusters. Our data demonstrate that Fbxw11 plays a negative role in the maintenance of HSPCs in vitro and repopulation capacity in vivo. Our data also provide valuable transcriptome references for HSPCs in homeostasis.

Tài liệu tham khảo

Höfer T, Rodewald HR. Differentiation-based model of hematopoietic stem cell functions and lineage pathways. Blood. 2018;132:1106–13. https://doi.org/10.1182/blood-2018-03-791517. Zon LI. Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature. 2008;453:306–13. https://doi.org/10.1038/nature07038. Wang X, Gao Y, Gao J, Li M, Zhou M, Wang J, Pang Y, Cheng H, Yuan C, Chu Y, Jiang Y, Zhou J, Luo HR, Ju Z, Cheng T, Yuan W. Rheb1 loss leads to increased hematopoietic stem cell proliferation and myeloid-biased differentiation in vivo. Haematologica. 2019;104:245–55. https://doi.org/10.3324/haematol.2018.194811. Zhang Y, Zhang J, An W, Wan Y, Ma S, Yin J, Li X, Gao J, Yuan W, Guo Y, Engel JD, Shi L, Cheng T, Zhu X. Intron 1 GATA site enhances ALAS2 expression indispensably during erythroid differentiation. Nucleic Acids Res. 2017;45:657–71. https://doi.org/10.1093/nar/gkw901. Seita J, Weissman IL. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med. 2010;2:640–53. https://doi.org/10.1002/wsbm.86. Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007;315:201–5. https://doi.org/10.1126/science.1127085. Metzger MB, Hristova VA, Weissman AM. HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci. 2012;125:531–7. https://doi.org/10.1242/jcs.091777. Kitagawa K, Kitagawa M. The SCF ubiquitin ligases involved in hematopoietic lineage. Curr Drug Targets. 2012;13:1641–8. https://doi.org/10.2174/138945012803529974. Iriuchishima H, Takubo K, Matsuoka S, Onoyama I, Nakayama KI, Nojima Y, Suda T. Ex vivo maintenance of hematopoietic stem cells by quiescence induction through Fbxw7α overexpression. Blood. 2011;117:2373–7. https://doi.org/10.1182/blood-2010-07-294801. Ueda T, Nagamachi A, Takubo K, Yamasaki N, Matsui H, Kanai A, Nakata Y, Ikeda K, Konuma T, Oda H, Wolff L, Honda Z, Wu X, Helin K, Iwama A, Suda T, Inaba T, Honda H. Fbxl10 overexpression in murine hematopoietic stem cells induces leukemia involving metabolic activation and upregulation of Nsg2. Blood. 2015;125:3437–46. https://doi.org/10.1182/blood-2014-03-562694. Chen BB, Glasser JR, Coon TA, Zou C, Miller HL, Fenton M, McDyer JF, Boyiadzis M, Mallampalli RK. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation. Blood. 2012;119:3132–41. https://doi.org/10.1182/blood-2011-06-358911. Chen JY, Wang MC, Hung WC. Bcr-Abl-induced tyrosine phosphorylation of Emi1 to stabilize Skp2 protein via inhibition of ubiquitination in chronic myeloid leukemia cells. J Cell Physiol. 2011;226:407–13. https://doi.org/10.1002/jcp.22346. Takeishi S, Matsumoto A, Onoyama I, Naka K, Hirao A, Nakayama KI. Ablation of Fbxw7 eliminates leukemia-initiating cells by preventing quiescence. Cancer Cell. 2013;23:347–61. https://doi.org/10.1016/j.ccr.2013.01.026. King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P, Aranda-Orgilles B, Perez-Garcia A, Shi J, Vakoc C, Sandy P, Shen SS, Ferrando A, Aifantis I. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell. 2013;153:1552–66. https://doi.org/10.1016/j.cell.2013.05.041. Duan S, Cermak L, Pagan JK, Rossi M, Martinengo C, di Celle PF, Chapuy B, Shipp M, Chiarle R, Pagano M. FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature. 2012;481:90–3. https://doi.org/10.1038/nature10688. Yao J, Yang J, Yang Z, Wang XP, Yang T, Ji B, Zhang ZY. FBXW11 contributes to stem-cell-like features and liver metastasis through regulating HIC1-mediated SIRT1 transcription in colorectal cancer. Cell Death Dis. 2021;12:930. https://doi.org/10.1038/s41419-021-04185-7. Holt RJ, Young RM, Crespo B, Ceroni F, Curry CJ, Bellacchio E, Bax DA, Ciolfi A, Simon M, Fagerberg CR, van Binsbergen E, De Luca A, Memo L, Dobyns WB, Mohammed AA, Clokie SJH, Zazo Seco C, Jiang YH, Sørensen KP, Andersen H, Sullivan J, Powis Z, Chassevent A, Smith-Hicks C, Petrovski S, Antoniadi T, Shashi V, Gelb BD, Wilson SW, Gerrelli D, Tartaglia M, Chassaing N, Calvas P, Ragge NK. De novo missense variants in FBXW11 cause diverse developmental phenotypes including brain, eye, and digit anomalies. Am J Hum Genet. 2019;105:640–57. https://doi.org/10.1016/j.ajhg.2019.07.005. Wang L, Feng W, Yang X, Yang F, Wang R, Ren Q, Zhu X, Zheng G. Fbxw11 promotes the proliferation of lymphocytic leukemia cells through the concomitant activation of NF-kappaB and beta-catenin/TCF signaling pathways. Cell Death Dis. 2018;9:427. https://doi.org/10.1038/s41419-018-0440-1. Oguro H, Ding L, Morrison SJ. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell. 2013;13:102–16. https://doi.org/10.1016/j.stem.2013.05.014. Pellin D, Loperfido M, Baricordi C, Wolock SL, Montepeloso A, Weinberg OK, Biffi A, Klein AM, Biasco L. A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nat Commun. 2019;10:2395. https://doi.org/10.1038/s41467-019-10291-0. Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, Shepherd M, Laurenti E, Wilson NK, Kent DG, Göttgens B. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood. 2016;128:e20-31. https://doi.org/10.1182/blood-2016-05-716480. Dong F, Hao S, Zhang S, Zhu C, Cheng H, Yang Z, Hamey FK, Wang X, Gao A, Wang F, Gao Y, Dong J, Wang C, Wang J, Lan Y, Liu B, Ema H, Tang F, Göttgens B, Zhu P, Cheng T. Differentiation of transplanted haematopoietic stem cells tracked by single-cell transcriptomic analysis. Nat Cell Biol. 2020;6:630–9. https://doi.org/10.1038/s41556-020-0512-1. Zhou J, Liu B, Lan Y. When blood development meets single-cell transcriptomics. Blood Sci. 2019;1:65–8. https://doi.org/10.1097/bs9.0000000000000007. Feng W, Yang X, Wang L, Wang R, Yang F, Wang H, Liu X, Ren Q, Zhang Y, Zhu X, Zheng G. P2X7 promotes the progression of MLL-AF9 induced acute myeloid leukemia by upregulation of Pbx3. Haematologica. 2021;106:1278–89. https://doi.org/10.3324/haematol.2019.243360. Yang X, Feng W, Wang R, Yang F, Wang L, Chen S, Ru Y, Cheng T, Zheng G. Repolarizing heterogeneous leukemia-associated macrophages with more M1 characteristics eliminates their pro-leukemic effects. Oncoimmunology. 2018;7:e1412910. https://doi.org/10.1080/2162402x.2017.1412910. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, Keren-Shaul H, Mildner A, Winter D, Jung S, Friedman N, Amit I. Immunogenetics. Chromatin state dynamics during blood formation. Science. 2014;345:943–9. https://doi.org/10.1126/science.1256271. Wang R, Feng W, Wang H, Wang L, Yang X, Yang F, Zhang Y, Liu X, Zhang D, Ren Q, Feng X, Zheng G. Blocking migration of regulatory T cells to leukemic hematopoietic microenvironment delays disease progression in mouse leukemia model. Cancer Lett. 2020;469:151–61. https://doi.org/10.1016/j.canlet.2019.10.032. Yang F, Wang R, Feng W, Chen C, Yang X, Wang L, Hu Y, Ren Q, Zheng G. Characteristics of NK cells from leukemic microenvironment in MLL-AF9 induced acute myeloid leukemia. Mol Immunol. 2018;93:68–78. https://doi.org/10.1016/j.molimm.2017.11.003. Chen SY, Yang X, Feng WL, Liao JF, Wang LN, Feng L, Lin YM, Ren Q, Zheng GG. Organ-specific microenvironment modifies diverse functional and phenotypic characteristics of leukemia-associated macrophages in mouse T cell acute lymphoblastic leukemia. J Immunol. 2015;194:2919–29. https://doi.org/10.4049/jimmunol.1400451. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England). 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England). 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive integration of single-cell data. Cell. 2019;177:1888–902. https://doi.org/10.1016/j.cell.2019.05.031. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6. https://doi.org/10.1038/nbt.2859. Nakagawa T, Araki T, Nakagawa M, Hirao A, Unno M, Nakayama K. S6 kinase- and beta-TrCP2-dependent degradation of p19Arf Is required for cell proliferation. Mol Cell Biol. 2015;35:3517–27. https://doi.org/10.1128/MCB.00343-15. Koike J, Sagara N, Kirikoshi H, Takagi A, Miwa T, Hirai M, Katoh M. Molecular cloning and genomic structure of the betaTRCP2 gene on chromosome 5q35.1. Biochem Biophys Res Commun. 2000;269:103–9. https://doi.org/10.1006/bbrc.2000.2241. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA, Schlitzer A, Chen J, Ng LG, Wang H, Liu Z, Su B, Ginhoux F. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell. 2019;178:1509–25. https://doi.org/10.1016/j.cell.2019.08.009. Vilchez D, Boyer L, Morantte I, Lutz M, Merkwirth C, Joyce D, Spencer B, Page L, Masliah E, Berggren WT, Gage FH, Dillin A. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature. 2012;489:304–8. https://doi.org/10.1038/nature11468. Jiang P, Wang H, Zheng J, Han Y, Huang H, Qian P. Epigenetic regulation of hematopoietic stem cell homeostasis. Blood Sci. 2019;1:19–28. https://doi.org/10.1097/bs9.0000000000000018. Saez I, Koyuncu S, Gutierrez-Garcia R, Dieterich C, Vilchez D. Insights into the ubiquitin–proteasome system of human embryonic stem cells. Sci Rep. 2018;8:4092. https://doi.org/10.1038/s41598-018-22384-9. Lv K, Jiang J, Donaghy R, Riling CR, Cheng Y, Chandra V, Rozenova K, An W, Mohapatra BC, Goetz BT, Pillai V, Han X, Todd EA, Jeschke GR, Langdon WY, Kumar S, Hexner EO, Band H, Tong W. CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies. Genes Dev. 2017;31:1007–23. https://doi.org/10.1101/gad.297135.117. Li H, Xu X, Wang D, Zeng L, Li B, Zhang Y, Su S, Wei L, You H, Fang Y, Wang Y, Liu Y. miR-146b-5p regulates bone marrow mesenchymal stem cell differentiation by SIAH2/PPARγ in aplastic anemia children and benzene-induced aplastic anemia mouse model. Cell Cycle. 2020;19:1–12. https://doi.org/10.1080/15384101.2020.1807081. Nagareddy B, Khan A, Kim H. Acetylation modulates the Fanconi anemia pathway by protecting FAAP20 from ubiquitin-mediated proteasomal degradation. J Biol Chem. 2020;40:13887–901. https://doi.org/10.1074/jbc.RA120.015288. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden DT. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science. 2000;287:1804–8. https://doi.org/10.1126/science.287.5459.1804. Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol. 2014;6:a021857. https://doi.org/10.1101/cshperspect.a021857. Yan W-L, Shen K-Y, Tien C-Y, Chen Y-A, Liu S-J. Recent progress in GM-CSF-based cancer immunotherapy. Immunotherapy. 2017;9:347–60. https://doi.org/10.2217/imt-2016-0141. Zhao H, Wang X, Yi P, Si Y, Tan P, He J, Yu S, Ren Y, Ma Y, Zhang J, Wang D, Wang F, Yu J. KSRP specifies monocytic and granulocytic differentiation through regulating miR-129 biogenesis and RUNX1 expression. Nat Commun. 2017;8:1428. https://doi.org/10.1038/s41467-017-01425-3. Chakraborty A, Tweardy DJ. Stat3 and G-CSF-induced myeloid differentiation. Leuk Lymphoma. 1998;30:433–42. https://doi.org/10.3109/10428199809057555. Baek KH, Choi J, Pei CZ. Cellular functions of OCT-3/4 regulated by ubiquitination in proliferating cells. Cancers. 2020;12:663. https://doi.org/10.3390/cancers12030663. Zhao X, Heng JI, Guardavaccaro D, Jiang R, Pagano M, Guillemot F, Iavarone A, Lasorella A. The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat Cell Biol. 2008;10:643–53. https://doi.org/10.1038/ncb1727. Naujokat C, Sarić T. Concise review: role and function of the ubiquitin–proteasome system in mammalian stem and progenitor cells. Stem Cells. 2007;25:2408–18. https://doi.org/10.1634/stemcells.2007-0255. Avellino R, Havermans M, Erpelinck C, Sanders MA, Hoogenboezem R, van de Werken HJ, Rombouts E, van Lom K, van Strien PM, Gebhard C, Rehli M, Pimanda J, Beck D, Erkeland S, Kuiken T, de Looper H, Groschel S, Touw I, Bindels E, Delwel R. An autonomous CEBPA enhancer specific for myeloid-lineage priming and neutrophilic differentiation. Blood. 2016;127:2991–3003. https://doi.org/10.1182/blood-2016-01-695759. Hasemann MS, Lauridsen FK, Waage J, Jakobsen JS, Frank AK, Schuster MB, Rapin N, Bagger FO, Hoppe PS, Schroeder T, Porse BT. C/EBPalpha is required for long-term self-renewal and lineage priming of hematopoietic stem cells and for the maintenance of epigenetic configurations in multipotent progenitors. PLoS Genet. 2014;10:e1004079. https://doi.org/10.1371/journal.pgen.1004079. Ohlsson E, Schuster MB, Hasemann M, Porse BT. The multifaceted functions of C/EBPα in normal and malignant haematopoiesis. Leukemia. 2016;30:767–75. https://doi.org/10.1038/leu.2015.324. Ye M, Zhang H, Amabile G, Yang H, Staber PB, Zhang P, Levantini E, Alberich-Jorda M, Zhang J, Kawasaki A, Tenen DG. C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence. Nat Cell Biol. 2013;15:385–94. https://doi.org/10.1038/ncb2698. Laurenti E, Varnum-Finney B, Wilson A, Ferrero I, Blanco-Bose WE, Ehninger A, Knoepfler PS, Cheng PF, MacDonald HR, Eisenman RN, Bernstein ID, Trumpp A. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell. 2008;3:611–24. https://doi.org/10.1016/j.stem.2008.09.005. Leong WZ, Tan SH, Ngoc PCT, Amanda S, Yam AWY, Liau WS, Gong Z, Lawton LN, Tenen DG, Sanda T. ARID5B as a critical downstream target of the TAL1 complex that activates the oncogenic transcriptional program and promotes T-cell leukemogenesis. Genes Dev. 2017;31:2343–60. https://doi.org/10.1101/gad.302646.117. Vagapova ER, Spirin PV, Lebedev TD, Prassolov VS. The role of TAL1 in hematopoiesis and leukemogenesis. Acta Naturae. 2018;10:15–23. Zhang S, O’Neill A, Xie M, Wu P, Wang X, Bai H, Dong F, Wang J, Zhang Q, Suda T, Ema H. Lymphoid-biased hematopoietic stem cells and myeloid-biased hematopoietic progenitor cells have radioprotection activity. Blood Sci. 2021;3:113–21. https://doi.org/10.1097/bs9.0000000000000089. Xie X, Liu M, Zhang Y, Wang B, Zhu C, Wang C, Li Q, Huo Y, Guo J, Xu C, Hu L, Pang A, Ma S, Wang L, Cao W, Chen S, Li Q, Zhang S, Zhao X, Zhou W, Luo H, Zheng G, Jiang E, Feng S, Chen L, Shi L, Cheng H, Hao S, Zhu P, Cheng T. Single-cell transcriptomic landscape of human blood cells. Natl Sci Rev. 2021;8:nwaa180. https://doi.org/10.1093/nsr/nwaa180.