Fatty acid uptake in diabetic rat adipocytes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abumrad NA, Perkins RC, Park JH, Park CR: Mechanism of long chain fatty acid permeation in the isolated adipocyte. J Biol Chem 256: 9183–9191, 1981
Abumrad NA, Park JH, Park CR: Permeation of long-chain fatty acid into adipocytes. Kinetics, specificity, and evidence for involvement of a membrane protein. J Biol Chem 259: 8945–8953, 1984
Abumrad NA, Melki SA, Harmon CM: Transport of fatty acid in the isolated rat adipocyte and in differentiating preadipose cells. Biochem Soc Trans 18: 1130–1132, 1990
Prows DR, Jefferson JR, Incerpi S, Heyliger CE, Hertelendy ZI, Schroeder F: Arch Biochem Biophys, submitted 1995
Trigatti BL, Mangroo D, Gerber GE: Photoaffinity labelling and fatty acid permeation in 3T3-L1 adipocytes. J Biol Chem 266: 22621–22625, 1991
Abumrad NA, Forest CC, Regen DM, Sanders S: Increase in membrane uptake of long-chain fatty acids early during preadipocyte differentiation. Proc Natl Acad Sci USA 88: 6008–6012, 1991
Schroeder F, Jefferson JR, Powell D, Incerpi S, Woodford JK, Colles S, Myers-Payne S, Emge T, Hubbell T, Moncecchi D, Prows D, Heyliger CE: Expression of rat L-FABP in mouse fibroblasts: role in fat absorption. Mol Cell Biochem 123: 73–83, 1993
Harmon CM, Luce P, Beth AH, Abumrad NA: Labeling of adipocyte membranes by sulfo-N-succinimidyl derivatives of long-chain fatty acids: inhibition of fatty acid transport. J Memb Biol 121: 261–268, 1991
Waggoner DA, Bernlohr DA: In situ labeling of the adipocyte lipid binding protein with 3-[125] iodo-4-azido-N-hexadecylsalicylamide. Evidence for a role of fatty acid binding proteins in lipid uptake. J Biol Chem 265: 11417–11420, 1990
Buelt MK, Xu Z, Banaszak L, Bernlohr DA: Structural and functional characterization of the phosphorylated adipocyte lipid-binding protein (pp15). Biochemistry 31: 3493–3499, 1992
Abumrad NA, Perry PR, Whitesell RR: Stimulation by epinephrine of the membrane transport of long chain fatty acid in the adipocyte. J Biol Chem 260: 9969–9971, 1985
Abumrad NA, Perry PR, Whitesell RR: Insulin antagonizes epinephrine activation of the membrane transport of fatty acids. J Biol Chem 261: 2999–3001, 1985
Schroeder F: Hormonal effects on fatty acid binding and physical properties of rat liver plasma membranes. J Memb Biol 68: 1–10, 1982
Ramsammy LS, Boos C, Josepovitz C, Kaloyanides GJ: Biophysical and biochemical alteration of renal cortical membranes in diabetic rat. Biochim et Biophys Acta 1146: 1–8, 1993
Kamada T, Otsuji S: Lower levels of erythrocyte membrane fluidity in diabetic patients. Diabetes 32: 585–591, 1983
Zhou SL, Stump D, Sorrentino D, Potter BJ, Berk PD: Adipocyte differentiation of 3T3-L1 cells involves augmented expression of a 43-kDa plasma membrane fatty acid binding protein. J Biol Chem 267: 14456–14461, 1992
Sams GH, Hargis BM, Hargis PS: Isolation and characterization of a fatty acid binding protein in adipose tissue of Gallus Domesticus. Comp Biochem Physiol 96B: 585–590, 1990
Hresko RC, Bernier M, Hoffman RD, Flores-Riveros JR, Liao K, Laird DM, Lane MD: Identification of phosphorylated 422(aP2) protein as pp15, the 15-kilodalton target of the insulin receptor tyrosine kinase in 3T3-4 adipocytes. Proc Natl Acad Sci USA 85: 8835–8839, 1988
Melki SA, Abumrad NA: Expression of adipocyte fatty acid binding protein in streptozotocin diabetes: effects of insulin deficiency and supplementation. J Lipid Res 34: 1527–1534, 1993
Rodbell M: Metabolism of isolated fat cells. Preparation of ‘ghosts’ and their properties, adenyl cyclase and other enzymes. J Biol Chem 242: 5744–5750, 1967.
Grund VR, Goldberg ND, Hunninghake DB: Histamine receptors in adipose tissue: involvement of cyclic adenosine monophosphate and H2 receptors in the lipolytic response to histamine in the isolated canine fat cell. J Pharmacol Exp Ther 195: 176–184, 1975
Prows DR, Murphy EJ, Schroeder F: Intestinal and liver fatty acid binding proteins differentially affect fatty acid uptake and esterification in L-cells. Lipids 30: 907–910, 1995
Nemecz G, Schroeder F: Time-resolved fluorescence investigation of membrane cholesterol heterogeneity and exchange. Biochemistry 27: 7740–7749, 1988
Prows DR, Jefferson JR, Incerpi S, Heyliger CE, Hertelendy ZI, Murphy E, Schroeder F: Cis-parinaric acid uptake in L-cell fibroblasts: Hormone effects. FASEB J 7: A385, 1993
Prows DR, Jefferson JR, Murphy EJ, Incerpi S, Hertelendy ZI, Heyliger CE, Schroeder F: Cis-parinaric acid uptake in L-cells. Arch Biochem Biophys, submitted 1996
Murphy EJ, Prows DR, Jefferson JR, Schroeder F: Liver fatty acid binding protein expression in transfected fibroblasts stimulates fatty acid uptake and metabolism. Biochim Biophys Acta, in press, 1996
Schroeder F, Holland JF, Vagelos PR: Use of ßb-parinaric acid, a novel fluorimetric probe, to determine characteristic temperatures of membranes and membrane lipids from cultured animal cells. J Biol Chem 251: 6739–6746, 1976
Nemecz G, Hubbell T, Jefferson JR, Lowe JB, Schroeder F: Interaction of fatty acids with recombinant rat intestinal and liver fatty acid-bind-ing proteins. Arch Biochem Biophys 286: 300–309, 1991
Nemecz G, Jefferson JR, Schroeder F: Polyene fatty acid interactions with recombinant intestinal and liver fatty acid-binding proteins. Spectroscopic studies. J Biol Chem 266: 17112–17123, 1991
Stremmel W, Berk PD: Hepatocellular influx of [14C]oleate reflects mem-brane transport rather than intracellular metabolism or binding. Proc Natl Acad Sci USA 83: 3086–3090, 1986
Spector AA, Steinberg D, Tanaka A: Uptake of free fatty acids by Ehrlich ascites tumor cells. J Biol Chem 240: 1032–1041, 1965
Heyliger CR, Khesghi T, Murphy EJ, Schroder F: Molec Cell Biochem in press, 1996
Woodford JK, Jefferson JR, Wood WG, Hubbell T, Schroeder F: Expression of liver fatty acid binding protein alters plasma membrane lipid composition and structure in transfected L-cell fibroblasts. Biochim Biophys Acta 1145: 257–265, 1993
Jefferson JR, Powell DP, Rymaszewski Z, Kukowska-Latallo J, Lowe JB, Schroeder F: Altered membrane structure in transfected mouse L-cell fibroblasts expressing rat liver fatty acid binding protein. J Biol Chem 265: 11062–11068, 1990
Nasser K, Cheng S, Levy D: The effect of diabetes on hepatocyte plasma membrane fluidity and concanavalin A-induced agglutination. Exptl Cell Res 132: 99–104, 1981
Zannoni C, Arcioni A, Cavortata P: Fluorescence depolarization in liquid crystals and membrane bilayers. Chem Phys Lipid 32: 179–250, 1983
Schroeder F, Colles S, Kreishmann GP, Heyliger CE, Wood WG: Synaptic plasma membrane structure and polarity of long sleep and short sleep mice. Arch Biochem Biophys 309: 369–376, 1993
Matarese V, Bemlohr DA: Purification of murine adipocyte lipid binding protein. J Biol Chem 263: 14544–14551, 1988
Baxa CA, Sha RS, Buelt MK, Smith AJ, Matarese V, Chinander LL, Boundy KL, Bernlohr DA: Human adipocyte lipid binding protein: purification of the protein and cloning of its cDNA. Biochemistry 28: 8683–8690
Matarese V, Bernlohr DA: Purification of murine adipocyte lipid-binding protein. Characterization as a fatty acid-and retinoic acid-binding protein. J Biol Chem 263: 14544–14551, 1988
Lalonde JM, Levenson MA, Roe JJ, Bernlohr DA, Banaszak LJ: Adipocyte lipid-binding protein complexed arachidonic acid: titration calorimetry and x-ray crystallographic studies. J Biol Chem 269: 25339–25347, 1994
Bailey IA, Garratt CJ, Wallace SM: An effect of fluorescent probes and of insulin on the structure of adipocyte membranes. Biochem Soc Trans 6: 302–304, 1978
Dutta-Roy A, Ray TK, Sinha AK: Control of erythrocyte membrane microviscosity by insulin. Biochim Biophys Acta 816: 187–190
Bryszewska M, Leyko W: Effect of insulin on human erythrocyte membrane fluidity in diabetes mellitus. Diabetologia 24: 311–313, 1983
Juhan-Vague I, Rahmani-Jourdheuil D, Mishal Z, Roul C, Mourayre Y, Aillaud MF, Vague P: Correction by insulin added in vitro of abnormal membrane fluidity of erythrocytes from Type I (insulin dependent) diabetic patients. Diabetologia 29: 417–420, 1986
Luly P, Shinitzky M: Gross structural changes in isolated liver cell plasma membranes upon binding of insulin. Biochemistry 18: 445–450, 1979
Kamada T, McMillan DE, Yamashita T, Otsuji S: Lowered membrane fluidity of younger erythrocytes in diabetes. Diabetes Res And Clin Pract 16: 1–6, 1992
Baba Y, Kai M, Kamada T, Setoyama S, Otsuji S: Higher levels of erythrocyte membrane microviscosity in diabetes. Diabetes 28: 1138–1140, 1979
Bryszewska M, Watala C, Torzecka W: Changes in fluidity and composition of erythrocyte membranes and in composition of plasma lipids in Type I diabetes. Brit J Haematol 62: 111–116, 1986
Kamada T, Otsuji S: Lower levels of erythrocyte membrane fluidity in diabetic patients. A spin label study. Diabetes 32: 585–591, 1983
Hill MA, Court JM: Erythrocyte membrane fluidity in type 1 diabetes mellitus. Pathology 15: 449–551, 1983
Ho M-T, Massey JB, Pownall HJ, Anderson RE, Hollyfield JG: Mechanism of vitamin A movement between rod outer segment, interphotoreceptor retinoid binding protein, and liposomes. J Biol Chem 264: 928–935