Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Thay đổi độ cứng cơ chủ động của nhóm cơ gân kheo do mệt mỏi: ảnh hưởng của loại co cơ và các hệ quả đối với chấn thương căng cơ
Tóm tắt
Chấn thương căng cơ gân kheo có thể xảy ra do sự mệt mỏi khác nhau và các đặc tính cơ học bị suy giảm ở các nhóm cơ gân kheo. Chúng tôi đã xem xét (1) tác động của mệt mỏi đến độ cứng cơ chủ động của gân kheo, và (2) liệu loại co cơ có ảnh hưởng đến sự thay đổi độ cứng cơ chủ động trong một bài tập mệt mỏi dưới tối đa. Chín nam giới khỏe mạnh đã thực hiện 99 lần gập đầu gối dưới tối đa trong các điều kiện tĩnh (ISO), đồng tâm (CON) và phản tâm (ECC). Chúng tôi đã đo lực mô men tối đa tuỳ ý ở khớp gối (MVT) (trước/sau), vận tốc sóng cắt (SWV) trong khi co cơ và thời gian thư giãn ngang (T2) (trước/sau) ở hai đầu dài cơ bắp chân (BFlh), bán gân (ST), và bán màng (SM). MVT giảm đáng kể sau tất cả các điều kiện (− 18.4 đến − 33.6%). Mô men tương đối trung bình duy trì trong suốt bài tập thấp hơn trong điều kiện CON so với ISO và ECC, nhưng mô men tuyệt đối thì tương tự nhau. Phản ứng SWV giữa các cá nhân rất đa dạng giữa các nhóm cơ và loại co cơ. Trung bình, SWV BFlh có xu hướng tăng ở điều kiện ISO (0.4 m/s, 4.5%, p = 0.064) nhưng giảm ở điều kiện ECC (− 0.8 m/s, − 7.7%, p < 0.01). SWV ST giảm ở CON (− 1.1 m/s, − 9.0%, p < 0.01), trong khi nó không thay đổi ở ISO và ECC. SWV SM giảm ở CON (− 0.8 m/s, − 8.1%, p < 0.01), nhưng không bị ảnh hưởng ở ISO và có sự biến đổi trong ECC. Mệt mỏi có tác động khác nhau đến các đặc tính cơ học của các cơ gân kheo, như đã đo bằng phương pháp siêu âm sóng cắt, phụ thuộc vào loại co cơ. Chúng tôi đã tìm thấy bằng chứng sơ bộ cho thấy BFlh mệt mỏi hơn ST hoặc SM trong các trạng thái co cơ phản tâm, điều này có thể giải thích tính dễ bị chấn thương căng cơ của nó.
Từ khóa
#mệt mỏi #nhóm cơ gân kheo #độ cứng cơ #co cơ #chấn thương căng cơTài liệu tham khảo
Akima H, Foley JM, Prior BM et al (2002) Vastus lateralis fatigue alters recruitment of musculus quadriceps femoris in humans. J Appl Physiol 92:679–684. https://doi.org/10.1152/japplphysiol.00267.2001
Ateş F, Hug F, Bouillard K et al (2015) Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity. J Electromyogr Kinesiol 25:703–708. https://doi.org/10.1016/j.jelekin.2015.02.005
Avrillon S, Guilhem G, Barthelemy A, Hug F (2018) Coordination of hamstrings is individual specific and is related to motor performance. J Appl Physiol 125:1069–1079. https://doi.org/10.1152/japplphysiol.00133.2018
Ayala F, De Ste CM, Sainz de Baranda P, Santonja F (2013) Absolute reliability of isokinetic knee flexion and extension measurements adopting a prone position. Clin Physiol Funct Imaging 33:45–54. https://doi.org/10.1111/j.1475-097X.2012.01162.x
Barron SM, Ordonez Diaz T, Pozzi F et al (2022) Linear relationship between electromyography and shear wave elastography measurements persists in deep muscles of the upper extremity. J Electromyogr Kinesiol 63:102645. https://doi.org/10.1016/j.jelekin.2022.102645
Bernabei M, Lee SSM, Perreault EJ, Sandercock TG (2020) Shear wave velocity is sensitive to changes in muscle stiffness that occur independently from changes in force. J Appl Physiol 128:8–16. https://doi.org/10.1152/japplphysiol.00112.2019
Bigland-Ritchie B, Woods JJ (1976) Integrated electromyogram and oxygen uptake during positive and negative work. J Physiol 260:267–277. https://doi.org/10.1113/jphysiol.1976.sp011515
Bouillard K, Jubeau M, Nordez A, Hug F (2014) Effect of vastus lateralis fatigue on load sharing between quadriceps femoris muscles during isometric knee extensions. J Neurophysiol 111:768–776. https://doi.org/10.1152/jn.00595.2013
Bourne MN, Williams MD, Opar DA et al (2017) Impact of exercise selection on hamstring muscle activation. Br J Sports Med 51:1021–1028. https://doi.org/10.1136/bjsports-2015-095739
Boyer A, Hug F, Avrillon S, Lacourpaille L (2021) Individual differences in the distribution of activation among the hamstring muscle heads during stiff-leg Deadlift and Nordic hamstring exercises. J Sports Sci. https://doi.org/10.1080/02640414.2021.1899405
Brooks JHM, Fuller CW, Kemp SPT, Reddin DB (2006) Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am J Sports Med 34:1297–1306. https://doi.org/10.1177/0363546505286022
Chleboun GS, France AR, Crill MT et al (2001) In vivo measurement of fascicle length and pennation angle of the human biceps femoris muscle. Cells Tissues Organs 169:401–409. https://doi.org/10.1159/000047908
Chumanov ES, Heiderscheit BC, Thelen DG (2011) Hamstring musculotendon dynamics during stance and swing phases of high-speed running. Med Sci Sports Exerc 43:525–532. https://doi.org/10.1249/MSS.0b013e3181f23fe8
Clarkson PM, Hubal MJ (2002) Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 81:S52–S69. https://doi.org/10.1097/00002060-200211001-00007
Craig CL, Marshall AL, Sjöström M et al (2003) International physical activity questionnaire: 12 country reliability and validity. Med Sci Sport Exerc 35:1381–1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB
Cutts A (1988) The range of sarcomere lengths in the muscles of the human lower limb. J Anat 160:79–88
Dahmane R, Djordjevic S, Smerdu V (2006) Adaptive potential of human biceps femoris muscle demonstrated by histochemical, immunohistochemical and mechanomyographical methods. Med Biol Eng Comput 44:999–1006. https://doi.org/10.1007/s11517-006-0114-5
Edman KA, Lou F (1990) Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibres. J Physiol 424:133–149. https://doi.org/10.1113/jphysiol.1990.sp018059
Ekstrand J, Hägglund M, Waldén M (2011) Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 39:1226–1232. https://doi.org/10.1177/0363546510395879
Enoka RM, Duchateau J (2016) Translating fatigue to human performance. Med Sci Sport Exerc 48:2228–2238. https://doi.org/10.1249/MSS.0000000000000929
Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol 586:11–23. https://doi.org/10.1113/jphysiol.2007.139477
Evangelidis PE, Massey GJ, Ferguson RA et al (2017) The functional significance of hamstrings composition: is it really a “fast” muscle group? Scand J Med Sci Sport 27:1181–1189. https://doi.org/10.1111/sms.12786
Evangelidis PE, Shan X, Otsuka S et al (2021) Hamstrings load bearing in different contraction types and intensities: A shear-wave and B-mode ultrasonographic study. PLoS ONE 16:e0251939. https://doi.org/10.1371/journal.pone.0251939
Foley JM, Jayaraman RC, Prior BM et al (1999) MR measurements of muscle damage and adaptation after eccentric exercise. J Appl Physiol 87:2311–2318. https://doi.org/10.1152/jappl.1999.87.6.2311
Ford LE, Huxley AF, Simmons RM (1981) The relation between stiffness and filament overlap in stimulated frog muscle fibres. J Physiol 311:219–249. https://doi.org/10.1113/jphysiol.1981.sp013582
Freitas SR, Mendes B, Firmino T et al (2021) Semitendinosus and biceps femoris long head active stiffness response until failure in professional footballers with vs. without previous hamstring injury. Eur J Sport Sci. https://doi.org/10.1080/17461391.2021.1910347
Fridén J, Sjöström M, Ekblom B (1983) Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med 4:170–176
Garrett WE, Califf JC, Bassett FH (1984) Histochemical correlates of hamstring injuries. Am J Sports Med 12:98–103
Greco CC, da Silva WL, Camarda SR, a, Denadai BS, (2013) Fatigue and rapid hamstring/quadriceps force capacity in professional soccer players. Clin Physiol Funct Imaging 33:18–23. https://doi.org/10.1111/j.1475-097X.2012.01160.x
Greig M (2008) The influence of soccer-specific fatigue on peak isokinetic torque production of the knee flexors and extensors. Am J Sports Med 36:1403–1409. https://doi.org/10.1177/0363546508314413
Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA (2003) Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Physiol Scand 178:165–173. https://doi.org/10.1046/j.1365-201X.2003.01121.x
Hegyi A, Csala D, Péter A et al (2019) High-density electromyography activity in various hamstring exercises. Scand J Med Sci Sports 29:34–43. https://doi.org/10.1111/sms.13303
Heiderscheit BC, Hoerth DM, Chumanov ES et al (2005) Identifying the time of occurrence of a hamstring strain injury during treadmill running: a case study. Clin Biomech 20:1072–1078. https://doi.org/10.1016/j.clinbiomech.2005.07.005
Kellis E, Galanis N, Kapetanos G, Natsis K (2012) Architectural differences between the hamstring muscles. J Electromyogr Kinesiol 22:520–526. https://doi.org/10.1016/j.jelekin.2012.03.012
Kubota J, Ono T, Araki M et al (2007) Non-uniform changes in magnetic resonance measurements of the semitendinosus muscle following intensive eccentric exercise. Eur J Appl Physiol 101:713–720. https://doi.org/10.1007/s00421-007-0549-x
Lakens D (2013) Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. https://doi.org/10.3389/fpsyg.2013.00863
Lieber RL, Friden J (1993) Muscle damage is not a function of muscle force but active muscle strain. J Appl Physiol 74:520–526. https://doi.org/10.1152/jappl.1993.74.2.520
Maeo S, Saito A, Otsuka S et al (2018) Localization of muscle damage within the quadriceps femoris induced by different types of eccentric exercises. Scand J Med Sci Sports 28:95–106. https://doi.org/10.1111/sms.12880
Mair SD, Seabera V, Glisson RR, Garrett WE (1996) The role of fatigue in susceptibility to acute muscle strain injury. Am J Sports Med 24:137–143
Marshall PWM, Lovell R, Jeppesen GK et al (2014) Hamstring muscle fatigue and central motor output during a simulated soccer match. PLoS ONE 9:e102753. https://doi.org/10.1371/journal.pone.0102753
Mendes B, Firmino T, Oliveira R et al (2020) Effects of knee flexor submaximal isometric contraction until exhaustion on semitendinosus and biceps femoris long head shear modulus in healthy individuals. Sci Rep 10:16433. https://doi.org/10.1038/s41598-020-73433-1
Nordez A, Hug F (2010) Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level. J Appl Physiol 108:1389–1394. https://doi.org/10.1152/japplphysiol.01323.2009
Ono T, Higashihara A, Fukubayashi T (2011) Hamstring functions during hip-extension exercise assessed with electromyography and magnetic resonance imaging. Res Sports Med 19:42–52. https://doi.org/10.1080/15438627.2011.535769
Ono T, Okuwaki T, Fukubayashi T (2010) Differences in activation patterns of knee flexor muscles during concentric and eccentric exercises. Res Sport Med 18:188–198. https://doi.org/10.1080/15438627.2010.490185
Opar DA, Williams MD, Shield AJ (2012) Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med 42:209–226. https://doi.org/10.2165/11594800-000000000-00000
Robertson DGE, Caldwell GE, Hamill J et al (2014) Research methods in biomechanics, 2nd edn. Human Kinetics, Champaign
Schache AG, Dorn TW, Blanch PD et al (2012) Mechanics of the human hamstring muscles during sprinting. Med Sci Sports Exerc 44:647–658. https://doi.org/10.1249/MSS.0b013e318236a3d2
Schache AG, Wrigley TV, Baker R, Pandy MG (2009) Biomechanical response to hamstring muscle strain injury. Gait Posture 29:332–338. https://doi.org/10.1016/j.gaitpost.2008.10.054
Schuermans J, Van Tiggelen D, Danneels L, Witvrouw E (2014) Biceps femoris and semitendinosus—teammates or competitors? New insights into hamstring injury mechanisms in male football players: a muscle functional MRI study. Br J Sports Med 48:1599–1606. https://doi.org/10.1136/bjsports-2014-094017
Shalabi A, Eriksson K, Jansson E, Wredmark T (2002) Ultrasound-guided percutaneous biopsies of the semitendinosus muscle following acl reconstruction—a methodological description. Int J Sports Med 23:202–206. https://doi.org/10.1055/s-2002-23179
Sjøgaard G, Savard G, Juel C (1988) Muscle blood flow during isometric activity and its relation to muscle fatigue. Eur J Appl Physiol Occup Physiol 57:327–335. https://doi.org/10.1007/BF00635992
Small K, Mcnaughton LR, Greig M et al (2009) Soccer fatigue, sprinting and hamstring injury risk. Int J Sports Med 30:573–578. https://doi.org/10.1055/s-0029-1202822
Tesch PA (1980) Fatigue pattern in subtypes of human skeletal muscle fibers. Int J Sports Med 01:79–81. https://doi.org/10.1055/s-2008-1034635
Timmins RG, Opar DA, Williams MD et al (2014) Reduced biceps femoris myoelectrical activity influences eccentric knee flexor weakness after repeat sprint running. Scand J Med Sci Sports. https://doi.org/10.1111/sms.12171
van der Made AD, Wieldraaijer T, Kerkhoffs GM et al (2013) The hamstring muscle complex. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-013-2744-0
Woodley SJ, Mercer SR (2005) Hamstring muscles: architecture and innervation. Cells Tissues Organs 179:125–141. https://doi.org/10.1159/000085004
Woods C, Hawkins RD, Maltby S et al (2004) The football association medical research programme: an audit of injuries in professional football—analysis of hamstring injuries. Br J Sports Med 38:36–41. https://doi.org/10.1136/bjsm.2002.002352
Worrell TW (1994) Factors associated with hamstring injuries. Sport Med 17:338–345. https://doi.org/10.2165/00007256-199417050-00006