Fatigue crack initiation assessment of welded joints accounting for residual stress

Fatigue and Fracture of Engineering Materials and Structures - Tập 41 Số 8 - Trang 1823-1837 - 2018
Yizhe Dong1, Y. Garbatov1, C. Guedes Soares1
1Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Tóm tắt

AbstractThe impact of residual stresses on the fatigue crack initiation life of welded joints is evaluated by the finite element method. The residual stresses of nonload‐carrying cruciform joints, induced by welding and ultrasonic impact treatment, are modelled by initial stresses, using the linear superposition principle. An alternative approach of using modified stress‐strain curves in the highly stressed zone is also proposed to account for the residual stress effect on the local stress‐strain history. An evaluation of the fatigue crack initiation life of welded joints based on the local strain approach is carried out. The predicted results show the effect of residual stresses and agree well with published experimental results of as‐welded and ultrasonic impact treated specimens, demonstrating the applicability of both approaches. The proposed approaches may provide effective tools to evaluate the residual stress effect on the fatigue crack initiation life of welded joints.

Từ khóa


Tài liệu tham khảo

10.1007/s40194-013-0066-y

Burk J, 1977, Influence of bending stresses on fatigue crack propagation life in butt joint welds, Weld Res Suppl, 56, 61s

BurkJ LawrenceF.The effect of residual stresses on weld fatigue life. FCP report No. 29 University of Illinois 1978.

10.1016/j.ijfatigue.2003.08.020

10.1533/9781845691882

10.1016/S0142-1123(01)00133-5

10.1016/j.ijfatigue.2008.02.015

BarthelemyJ.Structural integrity assessment procedures for European industry(SINTAP) Task 4 Compendium of residual stress profiles. Institut de Soudure 1999.

Kocak M, 2006, FITNET: Fitness‐for‐Service Procedure‐Final Draft MK7

BS 7910.Guide to methods for assessing the acceptability of flaws in metallic structures;2013.

Hobbacher A, 2015, Recommendations for Fatigue Design of Welded Joints and Components

10.1111/j.1460-2695.1979.tb01349.x

10.1016/j.ijfatigue.2013.03.006

10.1016/0013-7944(79)90142-5

10.1115/1.3641780

10.1016/0025-5416(81)90089-6

O'DowdNP NikbinKM LeeHY WimporyRC BiglariFR.Stress intensity factors due to residual stresses in T‐plate welds.ASME/JSME 2004 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers;2004:139–146.

LawrenceF BurkJ YungJ.Influence of residual stress on the predicted fatigue life of weldments. Residual Stress Effects in Fatigue. ASTM International;1982:33–43.

10.1146/annurev.ms.11.080181.002153

10.1520/STP30096S

VormwaldM SeegerT.Crack initiation life estimations for notched specimens with residual stresses based on local strains. Residual Stresses in Science and Technology1986;2: 743–750.

10.1016/S0921-5093(97)00465-6

10.1201/b18855-53

10.1115/1.2899507

10.1243/0309324011514476

10.1201/b18855-52

10.1201/9781315157368-40

10.1016/j.jmatprotec.2003.07.012

10.1016/S0308-0161(02)00060-1

10.1023/A:1026574400858

10.1016/S0141-0296(99)00055-3

RobertsJL.Residual stress effects on fatigue life via the stress intensity parameter K. University of Tennessee;2002.

10.1016/j.engfailanal.2008.06.017

10.1016/j.ijfatigue.2008.05.008

10.1111/j.1460-2695.2006.01015.x

10.1007/BF00018497

10.1046/j.1460-2695.1998.00097.x

10.1046/j.1460-2695.2003.00586.x

10.1111/ffe.12211

10.1007/s11223-016-9781-0

10.1016/j.tafmec.2016.02.002

10.1016/j.matdes.2014.06.072

Tekgoz M, 2014, Developments in Maritime Transportation and Exploitation of Sea Resources, 395

10.1201/b15120-42

BäumelJrA SeegerT.Thick surface layer model—life calculation for specimens with residual stress distribution and different material zones.International Conference on Residual StressesSpringer;1989:809–814.

10.4028/www.scientific.net/KEM.297-300.781

SuzukiT OkawaT ShimanukiH et al.Effect of ultrasonic impact treatment (UIT) on fatigue strength of welded joints.Adv Mat ResTrans Tech Publ;2014:736–742.

JakubczakH GlinkaG El‐ZeinM.Fatigue and reliability of welded structures. SAE Technical Paper 2007.

Higashida Y, 1978, Strain‐controlled fatigue behavior of ASTM A36 and A514 grade F steels and 5083‐0 aluminum weld materials, Weld Res Suppl, 5083, 334s

10.1201/9781315157368-41

10.1111/j.1460-2695.1990.tb00630.x

TregoningR.Strength and crack resistance behavior of mismatched welded joints. CDNSWC/TR‐61‐95‐17 Carderock Division Naval Surface Warfare Center 1995.

10.1016/j.ijfatigue.2016.07.018

10.1007/s40194-016-0304-1

10.1111/ffe.12095

ANSYS.Online Manuals;2012.

RambergW OsgoodWR.Description of stress‐strain curves by three parameters. NACA‐TN‐902 NASA 1943.

10.1111/j.1460-2695.1993.tb00069.x

10.1111/j.1460-2695.1995.tb00154.x

Dowling NE, 2013, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue

10.1016/S0142-1123(00)00023-2

10.1007/s10999-014-9269-7

10.1007/s00170-016-8448-0

10.1111/j.1460-2695.2007.01102.x

10.1007/s40194-013-0075-x

10.1007/s40194-012-0018-y