Fatigue crack closure: a review of the physical phenomena

Fatigue and Fracture of Engineering Materials and Structures - Tập 40 Số 4 - Trang 471-495 - 2017
Reinhard Pıppan1, Anton Hohenwarter2
1Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben 8700, Austria
2Department of Materials Physics Montanuniversität Leoben Leoben 8700 Austria

Tóm tắt

Abstract

Plasticity‐induced, roughness‐induced and oxide‐induced crack closures are reviewed. Special attention is devoted to the physical origin, the consequences for the experimental determination and the prediction of the effective crack driving force for fatigue crack propagation. Plasticity‐induced crack closure under plane stress and plane strain conditions require, in principle, a different explanation; however, both types are predictable. This is even the case in the transition region from the plane strain to the plane stress state and all types of loading conditions including constant and variable amplitude loading, the short crack case or the transition from small‐scale to large‐scale yielding. In contrast, the prediction of roughness‐induced and oxide‐induced closures is not as straightforward.

Từ khóa


Tài liệu tham khảo

10.1016/0025-5416(88)90547-2

Laird C.(ASTM International 1967).The influence of metallurgical structure on the mechanisms of fatigue crack propagation. inSTP 415 Fatigue crack propagation131

10.1016/0013-7944(70)90008-1

Pelloux R. M. N., 1969, Mechanisms of formation of ductile fatigue striations, ASM Trans Quart, 62, 281

10.1016/0001-6160(74)90072-8

10.1016/0001-6160(80)90161-3

10.1007/BF00550216

10.1016/S0142-1123(98)00016-4

Bichler C. H., 1999, Engineering Against Fatigue, 211

Siegmund T., 1990, Direct measurement of the cyclic crack‐tip deformation, Zeitschrift fur Met., 81, 677

Suresh S., 1991, Fatigue of Materials

10.1017/CBO9780511623127

10.1016/S1359-6454(97)00248-6

10.1111/j.1460-2695.1997.tb01502.x

10.1111/j.1151-2916.1997.tb03115.x

10.1016/S0966-9795(00)00111-4

10.1016/0956-7151(94)90285-2

Pippan R., 2003, Gamma Titanium Aluminides 2003, 521

10.1016/0142-1123(83)90005-1

10.1098/rsta.1903.0006

10.1016/S0142-1123(03)00051-3

Zapffe C. A., 1951, Fractographic registrations of fatigue, Trans. Am. Soc. Met., 43, 958

10.1007/BF00186854

Rice J.(ASTM International 1967).Mechanics of crack tip deformation and extension by fatigue. inSTP 415 Fatigue crack propagation247–309

Elber W.(ASTM International 1971).The significance of fatigue crack closure. inSTP 486 Damage tolerance in aircraft structures230–242

10.1016/0013-7944(70)90028-7

10.1016/0036-9748(81)90041-7

Suresh S., 1982, A geometric model for fracture surface roughness‐induced crack closure during fatigue crack‐growth, J. Met., 34, 71

10.1016/0013-7944(83)90131-5

10.1007/BF02816051

10.1007/BF02644803

Paris P. C. Bucci R. J. Wessel E. T. Clark W. G.andMager T. R.(ASTM International 1972).Extensive study of low fatigue crack growth rates in A533 and A508 steels. inSTP 513 Stress Analysis and Growth of Cracks

Ryder D.andLynch S. P.(1977).The effect of environment and frequency on crack nucleation. Stage I and Stage II crack growth in two aluminum zinc magnesium alloys. inI Mech E Conf. Publ.21–26

10.1016/0025-5416(78)90191-X

10.1007/BF02643688

Suresh S., 1980, Oxide‐induced crack closure, J. Met., 32, 76

McEvily A. J.(ASTM International 1988).On crack closure in fatigue crack growth. inSTP 982 Mechanics of Fatigue Crack Closure35–43

10.1007/s11661-001-1008-7

10.1023/A:1018655917051

10.1016/0013-7944(75)90004-1

10.1016/0025-5416(83)90223-9

Tanaka K., 1981, Fatigue growth threshold of small cracks, International Journal of Fracture, 17, 519, 10.1007/BF00033345

10.1016/0025-5416(86)90217-X

10.1007/BF02648597

10.1016/0921-5093(94)90351-4

Riemelmoser F. O., 1998, Discussion of error in the analysis of the wake dislocation problem. Author's reply, Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science, 29, 1357

Sadananda K., 1998, ‘Discussion of error in the analysis of the wake dislocation problem’‐Reply, Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science, 29, 1359

10.1007/s11661-999-0293-4

10.1007/s11661-999-0294-3

10.1016/S0013-7944(98)00014-9

10.1046/j.1460-2695.1998.00131.x

10.1080/01418610208240442

Pippan R. Riemelmoser F. O.andBichler C.(ASTM International 1999).Measurability of crack closure. inSTP 1343 Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume41–56

10.1111/j.1460-2695.1997.tb01508.x

10.1016/0022-5096(60)90013-2

10.1115/1.3424286

10.1016/0013-7944(79)90033-X

Newman J. C.(ASTM International 1981).A crack‐closure model for predicting fatigue crack growth under aircraft spectrum loading. inSTP 748 Methods and models for predicting fatigue crack growth under random loading

deKoning A. U.andLiefting G.(ASTM International 1988).Analysis of crack opening behavior by application of a discretized strip yield model. inSTP 982 Mechanics of fatigue crack closure437–458

10.1016/0013-7944(85)90021-9

10.1111/j.1460-2695.1991.tb00654.x

Newman J. C.(ASTM International 1999).An evaluation of plasticity‐induced crack closure concept and measurement methods. inSTP 1343 Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume(eds. McClung R. C. & Newman J. C.) 128–144

McEvily A. J.(1998).Private Communications.

10.1016/j.actamat.2013.12.036

10.1016/j.engfracmech.2012.10.006

10.1016/j.ijfatigue.2016.02.001

10.1016/j.engfracmech.2015.07.022

10.1016/0921-5093(91)90671-9

10.1016/j.actamat.2004.06.014

Suresh S., 1983, Near‐threshold fatigue crack propagation: a perspective on the role of crack closure, J. Me, 35, A4

10.1016/0025-5416(88)90577-0

10.1016/j.engfracmech.2015.12.002

10.1016/j.msea.2015.08.071

10.1016/j.msea.2006.03.154

10.1111/j.1460-2695.1994.tb00269.x

10.1016/0036-9748(83)90452-0

10.1016/S0013-7944(01)00129-1

Hertzberg R. W. Newton C. H.andJaccard R.(ASTM International 1988).Crack closure: correlation and confusion. inSTP 982 Mechanics of fatigue crack closure35–43

10.1201/9781420058215

10.1016/0022-5096(81)90003-X

10.2320/matertrans.42.2

Riemelmoser F. O.andPippan R.(ASTM International 1999).On the ΔKeffconcept: an investigation by means of a discrete dislocation model. inSTP 1343 Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume

10.1520/JTE12644J

Bray G. H.andDonald J. K.(ASTM International 1999). inSTP 1343 advances in fatigue crack closure measurement and analysis: second volume

Jono M. Sugeta A.andUematsu Y.(ASTM International 1999).Fatigue crack growth and crack closure behavior of Ti‐6Al‐4 V alloy under variable‐amplitude loadings. inSTP 1343 Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume(eds. McClung R. C. & Newman J. C.) 265–284

10.1016/0013-7944(88)90242-1

Larsen J. M., 1985, Growth of small cracks in Ti‐Al alloys, J. Met., 37, A65

Troha W. A. Nicholas T.andGrandt A. F.(ASTM International 1988).Three‐dimensional aspects of fatigue crack closure in surface flaws in polymethylmethacrylate material. inSTP 982 Mechanics of Fatigue Crack Closure

Ray S. K.andGrandt A. F.(ASTM International 1988).Comparison of methods for measuring fatigue crack closure in a thick specimen. inSTP 982 Mechanics of Fatigue Crack Closure

10.1111/j.1460-2695.2010.01447.x

10.1016/j.ijfatigue.2012.02.016

McClung R. C.andDavidson D. L.(ASTM International 1999).Near‐tip and remote characterization of plasticity‐induced fatigue crack closure. inSTP 1343 Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume(eds. McClung R. C. & Newman J. C.) 106–127

Riddell W. T. Piascik R. S. Sutton M. A. Zhao W. McNeill S. R.andHelm J. D.(ASTM International 1999).Determining fatigue crack opening loads from near‐crack‐tip displacement measurements. inSTP 1343 Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume(eds. McClung R. C. & Newman J. C.) 157–174

Sutton M. A. Zhao W. McNeill S. R. Helm J. D. Piascik R. S.andRiddell W. T.(ASTM International 1999).Local crack closure measurements: development of a measurement system using computer vision and a far‐field microscope. inSTP 1343 Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume(eds. McClung R. C. & Newman J. C.) 145–156

10.1179/1743280413Y.0000000023

10.1016/j.nimb.2005.12.063

10.1111/ffe.12463

Döker H.andBachmann V.(ASTM International 1988).Determination of crack opening load by use of threshold behavior. inMechanics of fatigue crack closure(eds. Newman J. C. & Elber W.) 247–259

10.1016/j.engfracmech.2006.06.011

10.1016/S0013-7944(03)00099-7

10.1016/0025-5416(88)90549-6

10.1016/0013-7944(89)90269-5

Newman J. C.(ASTM International 1976).A finite‐element analysis of fatigue crack closure. inSTP 590 Mechanics of Crack Growth281–301

10.1016/0013-7944(89)90152-5

10.1016/0142-1123(93)90374-Y

10.1016/S0013-7944(03)00003-1

10.1111/j.1460-2695.2005.00931.x

10.1023/A:1020189817060

10.1016/0036-9748(83)90357-5

10.1016/0013-7944(91)90027-X

10.1016/0013-7944(89)90027-1

McClung R. C., 1991, Finite element visualization of fatigue crack closure in plane stress and plane strain, International Journal of Fracture, 50, 27, 10.1007/BF00035167

10.1111/j.1460-2695.2006.00993.x

10.1016/0013-7944(90)90342-E

10.1016/0013-7944(86)90258-4

10.1016/j.engfracmech.2005.10.009

10.1016/0013-7944(85)90039-6

10.1046/j.1460-2695.2000.00259.x

10.1016/j.engfracmech.2009.01.014

10.1007/BF00012668

10.1115/1.1631026

Hudak S. J.andDavidson D. L.(ASTM International 1988).The dependence of crack closure on fatigue loading variables. inSTP 982 Mechanics of Fatigue Crack Closure(eds. Newman J. C. & Elber W.) 121–138

10.1016/j.ijfatigue.2013.08.019

10.1115/1.3425362

10.1046/j.1460-2695.1998.00083.x

10.1046/j.1460-2695.1999.00158.x

10.1016/S0013-7944(01)00061-3

10.1179/mst.1998.14.12.1227

10.1002/mawe.201400276

10.1111/j.1460-2695.2006.01051.x

10.1016/j.ijfatigue.2009.12.006

10.1016/S0142-1123(99)00094-8

10.1046/j.1460-2695.2000.00298.x

10.1016/j.engfracmech.2007.03.024

10.1179/imr.1984.29.1.445

10.1007/BF02648804

Pippan R.andStüwe H. P.(1986).Fatigue crack growth behaviour in constant‐load amplitude and constant delta‐K tests on notched specimens. inECF6 Amsterdam 1986

10.1115/1.3225698

10.1520/JTE12641J

10.1111/ffe.12082

10.1115/1.3225765

10.1016/0025-5416(87)90544-1