Fast renal trapping of porcine Luteinizing Hormone (pLH) shown by 123I-scintigraphic imaging in rats explains its short circulatory half-life
Tóm tắt
Sugar moieties of gonadotropins play no primary role in receptor binding but they strongly affect their circulatory half-life and consequently their in vivo biopotencies. In order to relate more precisely hepatic trapping of these glycoproteic hormones with their circulatory half-life, we undertook a comparative study of the distribution and elimination of porcine LH (pLH) and equine CG (eCG) which exhibit respectively a short and a long half-life. This was done first by following half-lives of pLH in piglets with hepatic portal circulation shunted or not. It was expected that such a shunt would enhance the short half-life of pLH. Subsequently, scintigraphic imaging of both 123I-pLH and 123I-eCG was performed in intact rats to compare their routes and rates of distribution and elimination. Native pLH or eCG was injected to normal piglets and pLH was tested in liver-shunted anæsthetized piglet. Blood samples were recovered sequentially over one hour time and the hormone concentrations were determined by a specific ELISA method. Scintigraphic imaging of 123I-pLH and 123I-eCG was performed in rats using a OPTI-CGR gamma camera. In liver-shunted piglets, the half-life of pLH was found to be as short as in intact piglets (5 min). In the rat, the half-life of pLH was also found to be very short (3–6 min) and 123I-pLH was found to accumulate in high quantity in less than 10 min post injection at the level of kidneys but not in the liver. 123I-eCG didn't accumulate in any organ in the rats during the first hour, plasma concentrations of this gonadotropin being still elevated (80%) at this time. In both the porcine and rat species, the liver is not responsible for the rapid elimination of pLH from the circulation compared to eCG. Our scintigraphic experiments suggest that the very short circulatory half-life of LH is due to rapid renal trapping.
Tài liệu tham khảo
Bahl OP, Moyle WR: Role of carbohydrate in the action of gonadotropins, in Receptors and hormone action. Edited by: Birnbaumer L. 1978, Academic Press: New York, London, 261-289.
Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G: The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem. 1971, 246 (5): 1461-1467.
Ashwell G, Morell AG: The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol. 1974, 41 (0): 99-128.
Fiete D, Srivastava V, Hindsgaul O, Baenziger JU: A hepatic reticuloendothelial cell receptor specific for SO4-4 GalNAc beta 1,4 GlcNAc beta 1,2 Man alpha that mediates rapid clearance of lutropin. Cell. 1991, 67 (6): 1103-1110.
Gay VL: Decreased metabolism and increased serum concentrations of LH and FSH following nephrectomy of the rat: absence of short-loop regulatory mechanisms. Endocrinology. 1974, 95 (6): 1582-1588.
De Kretser DM, Atkins RC, Paulsen CA: Role of the kidney in the metabolism of luteinizing hormone. J Endocrinol. 1973, 58 (3): 425-434.
Ascoli M, Liddle RA, Puett D: The metabolism of luteinizing hormone. Plasma clearance, urinary excretion, and tissue uptake. Mol Cell Endocrinol. 1975, 3 (1): 21-36. 10.1016/0303-7207(75)90029-5.
Aggarwal BB, Papkoff H: Studies on the disappearance of equine chorionic gonadotropin from the circulation in the rat: tissue uptake and degradation. Endocrinology. 1981, 109 (4): 1242-1247.
Martinuk SD, Manning AW, Black WD, Murphy BD: Effects of carbohydrates on the pharmacokinetics and biological activity of equine chorionic gonadotropin in vivo. Biol Reprod. 1991, 45 (4): 598-604.
Lecompte F, Combarnous Y: Enzyme immunoassay (EIA) for equine chorionic gonadotropin/pregnant mare serum gonadotropin (eCG/PMSG). J Immunoassay. 1992, 13 (4): 483-493.
Maghuin-Rogister G, Closset J, Hennen G: The carboxy-terminal primary structure of the alpha subunit from bovine and porcine luteinizing hormone. FEBS Lett. 1971, 13 (5): 301-305. 10.1016/0014-5793(71)80246-6.
Camous S, Prunier A, Pelletier J: Plasma prolactin, LH: FSH and estrogen excretion patterns in gilts during sexual development. J Anim Sci. 1985, 60 (5): 1308-1317.
Anouassi A, Combarnous Y, Lecompte F, Cahoreau C, Guillou F: Purification and characterization of luteinizing hormone from the dromedary (Camelus dromedarius). Biochimie. 1987, 69 (6–7): 647-654. 10.1016/0300-9084(87)90184-2.
Combarnous Y, Henge MH: Equine follicle-stimulating hormone. Purification, acid dissociation, and binding to equine testicular tissue. J Biol Chem. 1981, 256 (18): 9567-9572.
Fraker PJ, Speck JC: Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978, 80 (4): 849-857.
van der Laken CJ, Boerman OC, Oyen WJ, van de Ven MT, van der Meer JW, Corstens FH: Radiolabeled interleukin-8: specific scintigraphic detection of infection within a few hours. J Nucl Med. 2000, 41 (3): 463-469.
Veldhuis JD, Guardabasso V, Rogol AD, Evans WS, Oerter KE, Johnson ML, Rodbard D: Appraising the nature of luteinizing hormone secretory events in men. Am J Physiol. 1987, 252 (5 Pt 1): E599-E605.
Veldhuis JD, Carlson ML, Johnson ML: The pituitary gland secretes in bursts: appraising the nature of glandular secretory impulses by simultaneous multiple-parameter deconvolution of plasma hormone concentrations. Proc Natl Acad Sci U S A. 1987, 84 (21): 7686-7690.
Baenziger JU, Kumar S, Brodbeck RM, Smith PL, Beranek MC: Circulatory half-life but not interaction with the lutropin/chorionic gonadotropin receptor is modulated by sulfation of bovine lutropin oligosaccharides. Proc Natl Acad Sci U S A. 1992, 89 (1): 334-338.
Combarnous Y, Maghuin-Rogister G: Luteinizing hormone. 2. Relative reactivities of tyrosyl residues of the porcine hormone towards iodination. Eur J Biochem. 1974, 42 (1): 13-19.
Blower PJ, Puncher MR, Kettle AG, George S, Dorsch S, Leak A, Naylor LH, O'Doherty MJ: Iodine-123 salmon calcitonin, an imaging agent for calcitonin receptors: synthesis, biodistribution, metabolism and dosimetry in humans. Eur J Nucl Med. 1998, 25 (2): 101-108. 10.1007/s002590050200.
Robinson JP, Derreberry S, Liddle RA, Ascoli M, Puett D: Renal uptake of lutropin. Studies based on electron microscopic autoradiography and nephrectomy. Mol Cell Biochem. 1977, 15 (1): 63-66.
Rao CV: An overview of the past, present, and future of nongonadal LH/hCG actions in reproductive biology and medicine. Semin Reprod Med. 2001, 19 (1): 7-17. 10.1055/s-2001-13906.
Nomura K, Horiba N, Sato Y, Ujihara M, Demura H, Shizume K: Renotropic activity of lutropin: direct stimulation of DNA synthesis of cultured rat renal cortical cells. Biochem Biophys Res Commun. 1988, 150 (1): 506-510.
Takeuchi T, Higashihara E, Nomura K, Moriyama N, Aso Y, Demura H: The renotropic effect of ovine luteinizing hormone on subtotally nephrectomized rats. Endocrinol Jpn. 1992, 39 (1): 109-114.
Nomura K, Ohmura K, Nakamura Y, Horiba N, Shirakura Y, Sato Y, Ujihara M, Ohki K, Shizume K: Porcine luteinizing hormone isoform(s): relationship between their molecular structures, and renotropic versus gonadotropic activities. Endocrinology. 1989, 124 (2): 712-719.
Nomura K, Nakamura Y, Ujihara M, Ohmura K, Toraya S, Horiba N, Demura H: Renotropic and gonadotropic activity in homologous and heterologous hybrids of ovine luteinizing hormone and human chorionic gonadotropin subunits. Acta Endocrinol (Copenh). 1991, 125 (5): 590-594.
Setchell BP, Pakarinen P, Huhtaniemi I: How much LH do the Leydig cells see?. J Endocrinol. 2002, 175 (2): 375-382.
Smith P, Bousfield G, Kumar S, Fiete D, Baenziger J: Equine lutropin and chorionic gonadotropin bear oligosaccharides terminating with SO4-4-GalNAc and Sia alpha 2,3 Gal, respectively. J Biol Chem. 1993, 268 (2): 795-802.
Leteux C, Chai W, Loveless RW, Yuen CT, Uhlin-Hansen L, Combarnous Y, Jankovic M, Maric SC, Misulovin Z, Nussenzweig MC, Feizi T: The cysteine-rich domain of the macrophage mannose receptor is a multispecific lectin that recognizes chondroitin sulfates A and B and sulfated oligosaccharides of blood group Lewis(a) and Lewis(x) types in addition to the sulfated N-glycans of lutropin. J Exp Med. 2000, 191 (7): 1117-1126. 10.1084/jem.191.7.1117.