Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter

Springer Science and Business Media LLC - Tập 8 Số 2 - Trang 193-205 - 2013
Akira Teramoto1, Hiroshi Fujita2
1Faculty of Radiological Technology, School of Health Sciences, Fujita Health University, Toyoake-city, Japan
2Department of Intelligent Image Information, Graduate School of Medicine Gifu University, Gifu-city, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sone S, Takashima S, Li F, Yang Z, Honda T, Maruyama Y et al (1998) Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet 351: 1242–1245

National Lung Screening Trial. Information is available at http://www.cancer.gov/clinicaltrials/noteworthy-trials/nlst

Yamamoto S, Matsumoto M, Tateno Y, Iinuma T, Matsumoto T (1996) filter—a new filter based on mathematical morphology to extract the isolated shadow, and its application to automatic detection of lung cancer in X-ray CT. Proc 13th Int Conf Pattern Recognit 2: 3–7

Lee Y, Hara T, Fujita H, Itoh S, Ishigaki T (2001) Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Trans Med Imaging 20(7): 595–604

Shah SK, McNitt-Gray MF, Rogers SR, Goldin JG, Suh RD, Sayre JW et al (2005) Computer aided characterization of the solitary pulmonary nodule using volumetric and contrast enhancement features. Acad Radiol 12(10): 1310–1319

Li W (2007) Recent progress in computer-aided diagnosis of lung nodules on thin-section CT. Comput Med Imaging Graph 31(4–5): 248–257

Li Q, Li F, Doi K (2008) Computerized detection of lung nodules in thin-section CT images by use of selective enhancement filters and an automated rule-based classifier. Acad Radiol 15(2): 165–175

Pu J, Zheng B, Leader JK et al (2008) An automated CT based lung nodule detection scheme using geometric analysis of signed distance field. Med Phys 35(8): 3453–3461

Matsumoto S, Ohno Y, Yamagata H et al (2008) Computer-aided detection of lung nodules on multidetector row computed tomography using three-dimensional analysis of nodule candidates and their surroundings. Radiat Med 26(9): 9–562

Suzuki K (2009) Asupervised ‘lesion-enhancement’ filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD). Phys Med Biol 54(18): S31–45

Murphy K, van Ginneken B, Schilham AM et al (2009) A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med Image Anal 13(5): 757–770

Sousa JR, Silva AC, de Paiva AC et al (2010) Methodology for automatic detection of lung nodules in computerized tomography images. Comput Methods Programs Biomed 98(1): 1–14

Way TW, Hadjiiski LM, Sahiner B, Chan HP, Cascade PN, Kazerooni EA et al (2006) Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. Med Phys 33: 2323–2337

Sahiner B, Hadjiiski LM, Chan HP, Shi J, Cascade PN, Kazerooni EA et al (2007) Effect of CAD on radiologists’ detection of lung nodules on thoracic CT scans: observer performance study. Proc SPIE Med Imaging 6515(65151D): 1–7

Opfer R, Wiemker R (2007) Performance analysis for computer-aided lung nodule detection on LIDC data. Proc SPIE Med Imaging 6515(65151C): 1–9

Golosio B, Masala GL, Piccioli A, Oliva P, Carpinelli M (2009) A novel multithreshold method for nodule detection in lung CT. Med Phys 36(8): 3607–3618

Messay T, Hardie R, Rogers S (2010) A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal 14(3): 390–406

Riccardi A, Petkov TS, Ferri G, Masotti M, Campanini R (2011) Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification. Med Phys 38(4): 1962–1971

Camarlinghi N, Gori I, Retico A, Bellotti R et al (2011) Combination of computer-aided detection algorithms for automatic lung nodule identification. Int J CARS 7(3): 455–464

Tan M, Deklerck R, Jansen B et al (2011) A novel computer-aided lung nodule detection system for CT images. Med Phys 38(10): 5630–5645

Hardie RC, Rogers SK, Wilson T, Rogers A (2008) Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs. Med Image Anal 12(3): 240–258

Charles RG, Edward RD (1988) Morphological methods in image and signal processing. Prentice Hall, New Jersey

Kobatake H, Hashimoto S (1999) Convergence index filter for vector fields. IEEETrans Image Proc 8(8): 1029–1038

Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge

Burges CJC (1998) Tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2): 121–167

LIDC lung nodule image database. National cancer imaging archive at https://imaging.nci.nih.gov/ncia/

Armato SG III, Roberts RY, McNitt-Gray MF, Meyer CR, Reeves AP, McLennan G et al (2007) The lung image database consortium (LIDC): ensuring the integrity of expert-defined. Acad Radiol 14: 1455–1463

McNitt-Gray MF, Armato SG III, Meyer CR, Reeves AP, McLennan G, Pais RC et al (2007) The lung image database consortium (LIDC) data collection process for nodule detection and annotation. Acad Radiol 14: 1464–1474

Chang CC, Lin CJ. LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm/

Dehmeshki J, Ye X, Lin X, Valdivieso M, Amin H (2007) Automated detection of lung nodules in CT images using shape-based generic algorithm. Comput Med Imaging Graph 31(6): 408–417