Fascin promotes the invasion of pituitary adenoma through partial dependence on epithelial–mesenchymal transition

Hong You1, Jian Xu2, Xiaochun Qin2, Guodong Qian2, Yang Wang2, Fulei Chen2, Xiaoxu Shen2, Dong Zhao2, Qi Liu2
1Department of Neurosurgery, The First Affiliated Hospital, Shihezi University School of Medicine, North 2 Road, Shihezi, 832000, Xinjiang, China.
2Department of Neurosurgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bi WL, Greenwald NF, Ramkissoon SH et al (2017) Clinical identification of oncogenic drivers and copy-number alterations in pituitary tumors. Endocrinology 158:2284–2291. https://doi.org/10.1210/en.2016-1967

Chatzellis E, Alexandraki KI, Androulakis II et al (2015) Aggressive pituitary tumors. Neuroendocrinology 101:87–104. https://doi.org/10.1159/000371806

Dai C, Zhang B, Liu X et al (2013) Pyrimethamine sensitizes pituitary adenomas cells to temozolomide through cathepsin B-dependent and caspase-dependent apoptotic pathways. Int J Cancer 133:1982–1993. https://doi.org/10.1002/ijc.28199

Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20:69–84. https://doi.org/10.1038/s41580-018-0080-4

Easwaran H, Tsai HC, Baylin SB (2014) Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell 54:716–727. https://doi.org/10.1016/j.molcel.2014.05.015

Foda AAM, Alam MS, Ikram N et al (2019) Spinal versus intracranial meningioma: expression of E-cadherin and fascin with relation to clinicopathological features. Cancer Biomark 25:333–339. https://doi.org/10.3233/cbm-190164

Gao R, Zhang N, Yang J et al (2019a) Long non-coding RNA ZEB1-AS1 regulates miR-200b/FSCN1 signaling and enhances migration and invasion induced by TGF-β1 in bladder cancer cells. J Exp Clin Cancer Res 38:111. https://doi.org/10.1186/s13046-019-1102-6

Gao W, Zhang C, Li W et al (2019b) Promoter methylation-regulated miR-145-5p inhibits laryngeal squamous cell carcinoma progression by targeting FSCN1. Mol Ther 27:365–379. https://doi.org/10.1016/j.ymthe.2018.09.018

Ghebeh H, Al-Khaldi S, Olabi S et al (2014) Fascin is involved in the chemotherapeutic resistance of breast cancer cells predominantly via the PI3K/Akt pathway. Br J Cancer 111:1552–1561. https://doi.org/10.1038/bjc.2014.453

Gourlay CW, Ayscough KR (2005) The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat Rev Mol Cell Biol 6:583–589. https://doi.org/10.1038/nrm1682

Hardy J (1969) Transphenoidal microsurgery of the normal and pathological pituitary. Clin Neurosurg 16:185–217. https://doi.org/10.1093/neurosurgery/16.cn_suppl_1.185

Hashimoto Y, Kim DJ, Adams JC (2011) The roles of fascins in health and disease. J Pathol 224:289–300. https://doi.org/10.1002/path.2894

Holsken A, Buchfelder M, Fahlbusch R et al (2010) Tumour cell migration in adamantinomatous craniopharyngiomas is promoted by activated Wnt-signalling. Acta Neuropathol 119:631–639. https://doi.org/10.1007/s00401-010-0642-9

Huang FK, Han S, Xing B et al (2015) Targeted inhibition of fascin function blocks tumour invasion and metastatic colonization. Nat Commun 6:7465. https://doi.org/10.1038/ncomms8465

Hugo HJ, Gunasinghe NPAD, Hollier BG et al (2017) Epithelial requirement for in vitro proliferation and xenograft growth and metastasis of MDA-MB-468 human breast cancer cells: oncogenic rather than tumor-suppressive role of E-cadherin. Breast Cancer Res 19:86. https://doi.org/10.1186/s13058-017-0880-z

Jayo A, Parsons M (2010) Fascin: a key regulator of cytoskeletal dynamics. Int J Biochem Cell Biol 42:1614–1617. https://doi.org/10.1016/j.biocel.2010.06.019

Jia W, Zhu J, Martin TA et al (2015) Epithelial–mesenchymal transition (EMT) markers in human pituitary adenomas indicate a clinical course. Anticancer Res 35:2635–2643

Knosp E, Steiner E, Kitz K et al (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33:610–617; discussion 617–618. https://doi.org/10.1227/00006123-199310000-00008

Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196. https://doi.org/10.1038/nrm3758

Larysz D, Blamek S, Rudnik A (2012) Clinical aspects of molecular biology of pituitary adenomas. Folia Neuropathol 50:110–117

Li A, Morton JP, Ma Y et al (2014) Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology 146:1386-1396.e1–17. https://doi.org/10.1053/j.gastro.2014.01.046

Li Y, Wang Y, Xu J et al (2018) Relationship between expression of fascin, Ki-67 and invasiveness in pituitary adenomas (in Chinese). Chin J Pract Nerv Dis 21:929–934

Li B, Cheng J, Wang H et al (2019a) CCNB1 affects cavernous sinus invasion in pituitary adenomas through the epithelial–mesenchymal transition. J Transl Med 17:336. https://doi.org/10.1186/s12967-019-2088-8

Li B, Zhu HB, Song GD et al (2019b) Regulating the CCNB1 gene can affect cell proliferation and apoptosis in pituitary adenomas and activate epithelial-to-mesenchymal transition. Oncol Lett 18:4651–4658. https://doi.org/10.3892/ol.2019.10847

Lim J, Thiery JP (2012) Epithelial–mesenchymal transitions: insights from development. Development (Cambridge, England) 139:3471–3486. https://doi.org/10.1242/dev.071209

Liu C, Gao H, Cao L et al (2016) The role of FSCN1 in migration and invasion of pituitary adenomas. Mol Cell Endocrinol 419:217–224. https://doi.org/10.1016/j.mce.2015.10.021

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Machesky LM, Li A (2010) Fascin: invasive filopodia promoting metastasis. Commun Integr Biol 3:263–270. https://doi.org/10.4161/cib.3.3.11556

Mao X, Chen D, Wu J et al (2013) Differential expression of fascin, E-cadherin and vimentin: proteins associated with survival of cholangiocarcinoma patients. Am J Med Sci 346:261–268. https://doi.org/10.1097/MAJ.0b013e3182707108

McCormack A, Dekkers OM, Petersenn S et al (2018) Treatment of aggressive pituitary tumours and carcinomas: results of a European Society of Endocrinology (ESE) survey 2016. Eur J Endocrinol 178:265–276. https://doi.org/10.1530/EJE-17-0933

Molina-Ortiz I, Bartolomé RA, Hernández-Varas P et al (2009) Overexpression of E-cadherin on melanoma cells inhibits chemokine-promoted invasion involving p190RhoGAP/p120ctn-dependent inactivation of RhoA. J Biol Chem 284:15147–15157. https://doi.org/10.1074/jbc.M807834200

Qian G, Xu J, Shen X et al (2020) BP-1-102 and silencing of fascin-1 by RNA interference inhibits the proliferation of mouse pituitary adenoma AtT20 cells via the signal transducer and activator of transcription 3/fascin-1 pathway. Int J Neurosci. https://doi.org/10.1080/00207454.2020.1758088

Richmond AM, Blake EA, Torkko K et al (2017) Fascin is associated with aggressive behavior and poor outcome in uterine carcinosarcoma. Int J Gynecol Cancer 27:1895–1903. https://doi.org/10.1097/IGC.0000000000001077

Sav A, Rotondo F, Syro LV et al (2017) Selective molecular biomarkers to predict biologic behavior in pituitary tumors. Expert Rev Endocrinol Metab 12:177–185. https://doi.org/10.1080/17446651.2017.1312341

Tampaki EC, Tampakis A, Nonni A et al (2019) Combined fascin-1 and MAP17 expression in breast cancer identifies patients with high risk for disease recurrence. Mol Diagn Ther 23:635–644. https://doi.org/10.1007/s40291-019-00411-3

Tan VY, Lewis SJ, Adams JC et al (2013) Association of fascin-1 with mortality, disease progression and metastasis in carcinomas: a systematic review and meta-analysis. BMC Med 11:52. https://doi.org/10.1186/1741-7015-11-52

Wilson CB (1984) A decade of pituitary microsurgery. The Herbert Olivecrona lecture. J Neurosurg 61:814–833. https://doi.org/10.3171/jns.1984.61.5.0814

Wong SHM, Fang CM, Chuah L-H et al (2018) E-cadherin: its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol 121:11–22. https://doi.org/10.1016/j.critrevonc.2017.11.010

Wu S, Gu Y, Huang Y et al (2017a) Novel biomarkers for non-functioning invasive pituitary adenomas were identified by using analysis of microRNAs expression profile. Biochem Genet 55:253–267. https://doi.org/10.1007/s10528-017-9794-9

Wu X, Ma W, Zhou Q et al (2017b) AXL-GAS6 expression can predict for adverse prognosis in non-small cell lung cancer with brain metastases. J Cancer Res Clin Oncol 143:1947–1957. https://doi.org/10.1007/s00432-017-2408-4

Xing P, Li JG, Jin F et al (2011) Fascin, an actin-bundling protein, promotes breast cancer progression in vitro. Cell Biochem Funct 29:303–310. https://doi.org/10.1002/cbf.1750

Xu YF, Yu SN, Lu ZH et al (2011) Fascin promotes the motility and invasiveness of pancreatic cancer cells. World J Gastroenterol 17:4470–4478. https://doi.org/10.3748/wjg.v17.i40.4470

Yang Q, Li X (2019) Molecular network basis of invasive pituitary adenoma: a review. Front Endocrinol (Lausanne) 10:7. https://doi.org/10.3389/fendo.2019.00007