Faking Brownian motion with continuous Markov martingales

Finance and Stochastics - Tập 28 - Trang 259-284 - 2023
Mathias Beiglböck1, George Lowther2, Gudmund Pammer3, Walter Schachermayer1
1University of Vienna, Vienna, Austria
2London, United Kingdom
3ETH Zürich, Zürich, Schweiz

Tóm tắt

Hamza and Klebaner (2007) [10] posed the problem of constructing martingales with one-dimensional Brownian marginals that differ from Brownian motion, so-called fake Brownian motions. Besides its theoretical appeal, this problem represents the quintessential version of the ubiquitous fitting problem in mathematical finance where the task is to construct martingales that satisfy marginal constraints imposed by market data. Non-continuous solutions to this challenge were given by Madan and Yor (2002) [22], Hamza and Klebaner (2007) [10], Hobson (2016) [11] and Fan et al. (2015) [8], whereas continuous (but non-Markovian) fake Brownian motions were constructed by Oleszkiewicz (2008) [23], Albin (2008) [1], Baker et al. (2006) [4], Hobson (2013) [14], Jourdain and Zhou (2020) [16]. In contrast, it is known from Gyöngy (1986) [9], Dupire (1994) [7] and ultimately Lowther (2008) [17] and Lowther (2009) [20] that Brownian motion is the unique continuous strong Markov martingale with one-dimensional Brownian marginals. We took this as a challenge to construct examples of a “barely fake” Brownian motion, that is, continuous Markov martingales with one-dimensional Brownian marginals that miss out only on the strong Markov property.

Tài liệu tham khảo

Albin, J.: A continuous non-Brownian motion martingale with Brownian motion marginal distributions. Stat. Probab. Lett. 78, 682–686 (2008) Aliprantis, C.D., Burkinshaw, O.: Principles of Real Analysis, 2nd edn. Harcourt Brace Jovanovich, Boston (1990) Azéma, J., Yor, M.: Une solution simple au problème de Skorokhod. In: Dellacherie, C., et al. (eds.) Séminaire de Probabilités, XIII, Univ. Strasbourg, Strasbourg, 1977/78. Lecture Notes in Math., vol. 721, pp. 90–115. Springer, Berlin (1979) Baker, D., Donati-Martin, C., Yor, M.: A sequence of Albin type continuous martingales with Brownian marginals and scaling. In: Donati-Martin, C., et al. (eds.) Séminaire de Probabilités XLIII. Lecture Notes in Math., vol. 2006, pp. 441–449. Springer, Berlin (2011) Beiglböck, M., Pammer, G., Schachermayer, W.: From Bachelier to Dupire via optimal transport. Finance Stoch. 26, 59–84 (2022) Breeden, D.T., Litzenberger, R.H.: Prices of state-contingent claims implicit in option prices. J. Bus. 51, 621–651 (1978) Dupire, B.: Pricing with a smile. Risk 7(1), 18–20 (1994) Fan, J.Y., Hamza, K., Klebaner, F.: Mimicking self-similar processes. Bernoulli 21, 1341–1360 (2015) Gyöngy, I.: Mimicking the one-dimensional marginal distributions of processes having an Itô differential. Probab. Theory Relat. Fields 71, 501–516 (1986) Hamza, K., Klebaner, F.: A family of non-Gaussian martingales with Gaussian marginals. J. Appl. Math. Stoch. Anal. 2007, Article ID 92723 (2007) Hobson, D.: Mimicking martingales. Ann. Appl. Probab. 26, 2273–2303 (2016) Hobson, D., Klimmek, M.: Robust price bounds for the forward starting straddle. Finance Stoch. 9, 189–214 (2015) Hobson, D.G.: Volatility misspecification, option pricing and superreplication via coupling. Ann. Appl. Probab. 8, 193–205 (1998) Hobson, D.G.: Fake exponential Brownian motion. Stat. Probab. Lett. 83, 2386–2390 (2013) Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2013) Jourdain, B., Zhou, A.: Existence of a calibrated regime switching local volatility model. Math. Finance 30, 501–546 (2020) Lowther, G.: Fitting martingales to given marginals (2008). Preprint. Available online at https://arxiv.org/abs/0808.2319 Lowther, G.: A generalized backward equation for one dimensional processes (2008). Preprint. Available online at https://arxiv.org/abs/0803.3303 Lowther, G.: Properties of expectations of functions of martingale diffusions (2008). Preprint. Available online at https://arxiv.org/abs/0801.0330 Lowther, G.: Limits of one-dimensional diffusions. Ann. Probab. 37, 78–106 (2009) Lowther, G.: Nondifferentiable functions of one-dimensional semimartingales. Ann. Probab. 38, 76–101 (2010) Madan, D., Yor, M.: Making Markov martingales meet marginals: with explicit constructions. Bernoulli 8, 509–536 (2002) Oleszkiewicz, K.: On fake Brownian motions. Stat. Probab. Lett. 78, 1251–1254 (2008) Rogers, L.C., Williams, D.: Diffusions, Markov Processes, and Martingales: Volume 1. Foundations, 2nd edn. Cambridge University Press, Cambridge (2000) Villani, C.: Optimal Transport. Old and New. Springer, Berlin (2009)