Factors associated with non-invasive mechanical ventilation failure in patients with hematological neoplasia and their association with outcomes

Springer Science and Business Media LLC - Tập 8 - Trang 1-9 - 2020
Lídia Miranda Barreto1,2,3, Cecilia Gómez Ravetti1,2,3, Thiago Bragança Athaíde1, Renan Detoffol Bragança1,2,3, Nathália Costa Pinho2, Lucas Vieira Chagas2, Fabrício de Lima Bastos2, Vandack Nobre1,2,3
1Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
2School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
3NIIMI (Interdisciplinary Nucleus of Investigation in Intensive Medicine), Federal University of Minas Gerais, Belo Horizonte, Brazil

Tóm tắt

The usefulness of non-invasive mechanical ventilation (NIMV) in oncohematological patients is still a matter of debate. To analyze the rate of noninvasive ventilation failure and the main characteristics associated with this endpoint in oncohematological patients with acute respiratory failure (ARF). A ventilatory support protocol was developed and implemented before the onset of the study. According to the PaO2/FiO2 (P/F) ratio and clinical judgment, patients received supplementary oxygen therapy, NIMV, or invasive mechanical ventilation (IMV). Eighty-two patients were included, average age between 52.1 ± 16 years old; 44 (53.6%) were male. The tested protocol was followed in 95.1% of cases. Six patients (7.3%) received IMV, 59 (89.7%) received NIMV, and 17 (20.7%) received oxygen therapy. ICU mortality rates were significantly higher in the IMV (83.3%) than in the NIMV (49.2%) and oxygen therapy (5.9%) groups (P < 0.001). Among the 59 patients who initially received NIMV, 30 (50.8%) had to eventually be intubated. Higher SOFA score at baseline (1.35 [95% CI = 1.12–2.10], P = 0.007), higher respiratory rate (RR) (1.10 [95% CI = 1.00–1.22], P = 0.048), and sepsis on admission (16.9 [95% CI = 1.93–149.26], P = 0.011) were independently associated with the need of orotracheal intubation among patients initially treated with NIMV. Moreover, NIMV failure was independently associated with ICU (P < 0.001) and hospital mortality (P = 0.049), and mortality between 6 months and 1 year (P < 0.001). The implementation of a NIMV protocol is feasible in patients with hematological neoplasia admitted to the ICU, even though its benefits still remain to be demonstrated. NIMV failure was associated with higher SOFA and RR and more frequent sepsis, and it was also related to poor prognosis.

Tài liệu tham khảo

Belenguer-Muncharaz A, Albert-Rodrigo L, Ferrandiz-Selles A, Cebrian-Graullera G. Ten-year evolution of mechanical ventilation in acute respiratory failure in the hematogical patient admitted to the intensive care unit. Med Int. 2013;37(7):452–60. Azoulay E, Pene F, Darmon M, et al. Managing critically ill hematology patients: time to think differently. Blood Rev. 2015;29(6):359–67. Neuschwander A, Lemiale V, Darmon M, et al. Noninvasive ventilation during acute respiratory distress syndrome in patients with cancer: trends in use and outcome. J Crit Care. 2017;38:295–9. Bouteloup M, Perinel S, Bourmaud A, et al. Outcomes in adult critically ill cancer patients with and without neutropenia: a systematic review and meta-analysis of the Groupe de Recherche en reanimation Respiratoire du patient d’Onco-Hematologie (GRRR-OH). Oncotarget. 2017;8(1):1860–70. Torres VBL, Soares M. Pacientes com neoplasias hematológicas internados nas unidades de terapia intensiva: novos desafios Para o intensivista. Revista Brasileira de Terapia Intensiva. 2015;27:193–5. Gristina GR, Antonelli M, Conti G, et al. Noninvasive versus invasive ventilation for acute respiratory failure in patients with hematologic malignancies: a 5-year multicenter observational survey. Crit Care Med. 2011;39(10):2232–9. Bird GT, Farquhar-Smith P, Wigmore T, Potter M, Gruber PC. Outcomes and prognostic factors in patients with haematological malignancy admitted to a specialist cancer intensive care unit: a 5 yr study. Br J Anaesth. 2012;108(3):452–9. Molina R, Bernal T, Borges M, et al. Ventilatory support in critically ill hematology patients with respiratory failure. Crit Care. 2012;16(4):R133. Barreto LM, Torga JP, Coelho SV, Nobre V. Main characteristics observed in patients with hematologic diseases admitted to an intensive care unit of a Brazilian university hospital. Rev Bras Ter Intensiva. 2015;27(3):212–9. Moreno RP, Metnitz PG, Almeida E, et al. SAPS 3--from evaluation of the patient to evaluation of the intensive care unit. Part 2: development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 2005;31(10):1345–55. Metnitz PG, Moreno RP, Almeida E, et al. SAPS 3--from evaluation of the patient to evaluation of the intensive care unit. Part 1: objectives, methods and cohort description. Intensive Care Med. 2005;31(10):1336–44. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29. Vincent JL, Moreno R, Takala J, et al. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707–10. Azoulay E, Lemiale V, Mokart D, et al. Acute respiratory distress syndrome in patients with malignancies. Intensive Care Med. 2014;40(8):1106–14. Soares M, Salluh JI, Spector N, Rocco JR. Characteristics and outcomes of cancer patients requiring mechanical ventilatory support for >24 hrs. Crit Care Med. 2005;33(3):520–6. Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50(2):1602426. https://doi.org/10.1183/13993003.02426-2016. Carvalho CRR, Toufen Junior C, Franca SA. Ventilação mecânica: princípios, análise gráfica e modalidades ventilatórias. J Bras Pneumol. 2007;33:54–70. Barbas CS, Isola AM, Farias AM, et al. Brazilian recommendations of mechanical ventilation 2013. Part 2. Rev Bras Ter Intensiva. 2014;26(3):215–39. Barbas CS, Isola AM, Farias AM, et al. Brazilian recommendations of mechanical ventilation 2013. Part I. Rev Bras Ter Intensiva. 2014;26(2):89–121. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10. Azevedo LCP, Caruso P, Silva UVA, et al. Outcomes for patients with cancer admitted to the ICU requiring ventilatory support: results from a prospective multicenter study. Chest. 2014;146(2):257–66. Hilbert G, Gruson D, Vargas F, et al. Noninvasive ventilation in immunosuppressed patients with pulmonary infiltrates, fever, and acute respiratory failure. N Engl J Med. 2001;344(7):481–7. Lemiale V, Mokart D, Resche-Rigon M, et al. Effect of noninvasive ventilation vs oxygen therapy on mortality among immunocompromised patients with acute respiratory failure: a randomized clinical trial. JAMA. 2015;314(16):1711–9. Depuydt PO, Benoit DD, Roosens CD, Offner FC, Noens LA, Decruyenaere JM. The impact of the initial ventilatory strategy on survival in hematological patients with acute hypoxemic respiratory failure. J Crit Care. 2010;25(1):30–6. Depuydt PO, Benoit DD, Vandewoude KH, Decruyenaere JM, Colardyn FA. Outcome in noninvasively and invasively ventilated hematologic patients with acute respiratory failure. Chest. 2004;126(4):1299–306. Azoulay E, Pickkers P, Soares M, et al. Acute hypoxemic respiratory failure in immunocompromised patients: the Efraim multinational prospective cohort study. Intensive Care Med. 2017;43(12):1808–19. Antonelli M, Conti G, Esquinas A, et al. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med. 2007;35(1):18–25. Peñuelas Ó, Esteban A. Noninvasive ventilation for acute respiratory failure: the next step is to know when to stop. Eur Respir J. 2018;52(2):1801185. https://doi.org/10.1183/13993003.01185-2018. Saillard C, Mokart D, Lemiale V, Azoulay E. Mechanical ventilation in cancer patients. Minerva Anestesiol. 2014;80(6):712–25. Rathi NK, Haque SA, Nates R, et al. Noninvasivepositive pressure ventilation vs invasive mechanical ventilation as first-line therapy for acute hypoxemic respiratory failure in cancer patients. J Crit Care. 2017;39:56–61. Del Sorbo L, Jerath A, Dres M, Parotto M. Non-invasive ventilation in immunocompromised patients with acute hypoxemic respiratory failure. J Thorac Dis. 2016;8(3):E208–16. Geng Z, Huang L, Song M, Song Y. N-terminal pro-brain natriuretic peptide and cardiovascular or all-cause mortality in the general population: a meta-analysis. Sci Rep. 2017;7:41504. Bento AM, Cardoso LF, Tarasoutchi F, Sampaio RO, Kajita LJ, Lemos Neto PA. Hemodynamic effects of noninvasive ventilation in patients with venocapillary pulmonary hypertension. Arq Bras Cardiol. 2014;103:410–7. Bündchen DC, Gonzáles AI, Noronha MD, Brüggemann AK, Sties SW, Carvalho TD. Noninvasive ventilation and exercise tolerance in heart failure: a systematic review and meta-analysis. Braz J Phys Ther. 2014;18:385–94. Richards S, Wibrow B, Anstey M, Sidiqi H, Chee A, Ho KM. Determinants of 6-month survival of critically ill patients with an active hematologic malignancy. J Crit Care. Dec 2016;36:252–8.