Facilitation of a Nociceptive Flexion Reflex in Man by Nonnoxious Radiant Heat Produced by a Laser

Journal of Neurophysiology - Tập 79 Số 5 - Trang 2557-2567 - 1998
Léon Plaghki1, Dominique Bragard1, Daniel Le Bars2, Jean‐Claude Willer3, Jean‐Marie Godfraind1
1Faculté de Médecine, Université Catholique de Louvain, B-1200 Brussels, Belgium;
2Institut National de la Santé et de la Recherche Médicale U-161, 75014 Paris; and
3Faculté de Médecine Pitié-Salpêtrière, Laboratoire de Neurophysiologie, 75634 Paris Cedex 13, France

Tóm tắt

Plaghki, Léon, Dominique Bragard, Daniel Le Bars, Jean-Claude Willer, and Jean-Marie Godfraind. Facilitation of a nociceptive flexion reflex in man by nonnoxious radiant heat produced by a laser. J. Neurophysiol. 79: 2557–2567, 1998. Electromyographic recordings were made in healthy volunteers from the knee-flexor biceps femoris muscle of the nociceptive RIIIreflex elicited by electrical stimulation of the cutaneous sural nerve. The stimulus intensity was adjusted to produce a moderate pricking-pain sensation. The test responses were conditioned by a nonnoxious thermal (≤40°C) stimulus applied to the receptive field of the sural nerve. This stimulus was delivered by a CO2laser stimulator and consisted of a 100-ms pulse of heat with a beam diameter of 20 mm. Its power was 22.7 ± 4.2 W (7.2 mJ/mm2), and it produced a sensation of warmth. The maximum surface temperature reached at the end of the period of stimulation was calculated to be 7°C above the actual reference temperature of the skin (32°C). The interval between the laser (conditioning) and electrical (test) stimuli was varied from 50 to 3,000 ms in steps of 50 ms. It was found that the nociceptive flexion reflex was facilitated by the thermal stimulus; this modulation occurred with particular conditioning-test intervals, which peaked at 500 and 1,100 ms with an additional late, long-lasting phase between 1,600 and 2,300 ms. It was calculated that the conduction velocities of the cutaneous afferent fibers responsible for facilitating the RIIIreflex, fell into three ranges: one corresponding to Aδ fibers (3.2 m/s) and two in the C fiber range (1.3 and 0.7 m/s). It is concluded that information emanating from warm receptors and nociceptors converges. In this respect, the present data show, for the first time, that in man, conditioning nonnociceptive warm thermoreceptive Aδ and C fibers results in an interaction at the spinal level with a nociceptive reflex. This interaction may constitute a useful means whereby signals add together to trigger flexion reflexes in defensive reactions and other basic motor behaviors. It also may contribute to hyperalgesia in inflammatory processes. The methodology used in this study appears to be a useful noninvasive tool for exploring the thermoalgesic mechanisms in both experimental and clinical situations.

Từ khóa


Tài liệu tham khảo

10.1016/0304-3959(94)90080-9

10.1111/j.1460-9568.1995.tb01038.x

10.1016/0006-8993(74)90488-0

10.1016/0006-8993(83)90773-4

10.1152/jn.1976.39.6.1160

10.1016/0006-8993(77)90750-8

10.1007/BF00240510

10.1007/BF00663913

Bromm B., 1984, Hum. Neurobiol., 3, 33

10.1016/0306-4522(95)00269-O

10.1113/jphysiol.1971.sp009376

10.1152/jn.1975.38.5.1060

10.1152/jn.1983.49.1.98

10.1113/jphysiol.1983.sp014702

10.1113/jphysiol.1984.sp015304

10.1016/0304-3959(83)90005-2

10.1016/0028-3908(88)90031-7

10.1016/0006-8993(89)90108-X

10.1016/0304-3959(92)90189-I

10.1016/0304-3959(94)90105-8

10.1016/0006-8993(88)90579-3

10.1152/jn.1973.36.2.325

10.1152/jn.1979.42.5.1316

10.1093/brain/113.4.1223

10.1016/0014-4886(82)90118-2

Dray A., 1994, Pain Rev., 1, 153

10.1152/jn.1975.38.6.1373

10.1152/jn.1980.43.1.1

10.1016/S0306-4522(96)00286-2

Eccles R. M., 1959, Arch. Ital. Biol., 97, 199

10.1152/jn.1994.72.1.194

10.1016/0006-8993(88)90113-8

10.1007/BF00587918

Gozariu M., 1995, Soc. Neurosci. Abstr., 21, 1408

10.1113/jphysiol.1979.sp012846

10.1016/0165-0270(83)90113-9

Hallin R. G., 1981, J. Neurol. Neurosurg. Psychiatry, 44, 313

10.1016/0304-3959(75)90099-8

10.1007/BF00586896

10.1007/BF00248743

10.1016/0304-3959(87)90120-5

10.1016/0304-3959(83)90123-9

10.1152/jn.1978.41.2.509

10.1016/S0079-6123(08)60803-1

10.1113/jphysiol.1977.sp011742

10.1016/0304-3959(79)90048-4

10.1016/0006-8993(81)91124-0

10.1093/brain/98.1.113

Plaghki L., 1989, Arch. Int. Physiol. Biochem., 97, 82

10.1016/0014-4886(75)90151-X

10.1016/0006-8993(83)90523-1

10.1093/brain/110.6.1497

10.1016/0168-0102(90)90008-3

10.1016/0014-4886(86)90085-3

10.1093/brain/73.4.480

10.1152/jn.1993.69.5.1621

10.1146/annurev.ph.48.030186.003205

Steffens H., 1993, J. Physiol. (Lond.), 466, 191, 10.1113/jphysiol.1993.sp019716

10.1016/0165-0173(81)90001-1

10.1016/0006-8993(73)90638-0

Taylor J. S., 1989, Proc. Int. Union Physiol. Sci., 17, 94

10.1113/jphysiol.1991.sp018584

10.1016/0006-8993(90)90782-7

10.1152/jn.1993.69.6.2116

10.1152/physrev.1979.59.4.919

10.1016/0006-8993(72)90198-9

10.1002/mus.880100512

10.1152/jn.1986.56.4.1185

10.1113/jphysiol.1984.sp015475

10.1016/0304-3940(85)90286-1

10.1016/0006-8993(90)91233-7

10.1111/j.1748-1716.1991.tb09044.x

10.1016/0304-3959(77)90036-7

10.1016/0006-8993(83)90263-9

10.1016/0006-8993(80)90507-7

10.1152/jn.1989.62.5.1028

Willer J.-C., 1995, Advances in Pain Research and Therapy, 22, 541

10.1093/brain/107.4.1095

10.1016/0304-3959(84)90045-9

10.1523/JNEUROSCI.06-05-01433.1986

10.1016/0304-3940(86)90195-3

10.1016/0304-3940(91)90277-Z

10.1016/0306-4522(93)90550-Y