Facets of heat shock protein 70 show immunotherapeutic potential

Immunology - Tập 110 Số 1 - Trang 1-9 - 2003
Stephen Todryk1, Michael J. Gough1, A. Graham Pockley1
1Immune Regulation Research Group, Department of Biochemistry, Trinity College, Dublin, Ireland

Tóm tắt

Summary

Amongst the families of intracellular molecules that chaperone and assist with the trafficking of other proteins, notably during conditions of cellular stress, heat shock protein (hsp) 70 is one of the most studied. Although its name suggests that expression is exclusively induced during cellular hyperthermia, members of the hsp70 family of proteins can be constitutively expressed and/or induced by a range of other cellular insults. The ubiquitous presence of hsp70 in eukaryotic and prokaryotic cells, combined with its high degree of sequence homology and intrinsic immunogenicity, have prompted the suggestion that inappropriate immune reactivity to hsp70 might lead to pro‐inflammatory responses and the development of autoimmune disease. Indeed, hsp70 has been shown to be a potent activator of innate immunity and aberrant expression of hsp70 in certain organs promotes immunopathology. However, studies also suggest that hsp70 might have immunotherapeutic potential, as hsp70 purified from malignant and virally infected cells can transfer and deliver antigenic peptides to antigen‐presenting cells to elicit peptide‐specific immunity and, in contrast to its reported pro‐inflammatory effects, the administration of recombinant hsp70 can attenuate experimental autoimmune disease. This review focuses on the immunoregulatory capacity of hsp70 and its potential therapeutic value.

Từ khóa


Tài liệu tham khảo

10.1007/BF02172188

10.1016/0022-2836(74)90447-1

10.1016/S0006-2952(99)00299-3

10.1016/0092-8674(91)90611-2

10.1038/381571a0

10.1379/1466-1268(1998)003<0209:SPAAIP>2.3.CO;2

10.1016/0167-5699(90)90050-J

10.1146/annurev.iy.08.040190.002153

10.1093/intimm/1.2.191

10.1046/j.1365-2249.1996.929628.x

Tanaka S, 1999, Activation of T cells recognizing an epitope of heat shock protein 70 can protect against rat adjuvant arthritis, J Immunol, 163, 5560, 10.4049/jimmunol.163.10.5560

10.4049/jimmunol.164.5.2711

Udono H, 1994, Comparison of tumor‐specific immunogenicities of stress‐induced proteins gp96, hsp90 and hsp70, J Immunol, 152, 5398, 10.4049/jimmunol.152.11.5398

10.1084/jem.178.4.1391

10.1007/s00262-002-0263-9

Verma R, 2000, Proteasomal proteomics. identification of nucleotide‐sensitive proteasome‐interacting proteins by mass spectrometric analysis of affinity‐purified proteasomes, Mol Biol Cell, 34, 25

10.1084/jem.191.11.1957

10.1016/S0161-5890(02)00098-6

Voellmy R, 1994, Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression in higher eukaryotes, Crit Rev Euk Gene Exp, 4, 357

Morimoto RI, 1994, The Biology of Heat Shock Proteins and Molecular Chaperones., 417

10.1128/MCB.13.4.1983

10.1101/gad.5.10.1902

10.1128/MCB.13.3.1392

Zuo J, 1994, Activation of the DNA‐binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular triple‐stranded coiled‐coil structure, Mol Cell Biol, 14, 7447

10.1096/fj00-0294rev

10.1101/gad.10.21.2782

10.1002/(SICI)1097-4644(19971001)67:1<43::AID-JCB5>3.0.CO;2-W

10.1101/gad.12.24.3788

10.1146/annurev.cb.11.110195.002301

10.1242/jcs.115.14.2809

10.1101/gad.12.5.654

10.1101/gad.12.13.1962

10.1007/BF01923457

Panjwani N, 1999, The HSC73 molecular chaperone: involvement in MHC class II antigen presentation, J Immunol, 163, 1936, 10.4049/jimmunol.163.4.1936

10.1093/intimm/10.5.609

10.1002/(SICI)1521-4141(199912)29:12<3925::AID-IMMU3925>3.0.CO;2-S

10.1038/355033a0

10.1098/rstb.1993.0035

10.1016/0952-7915(94)90076-0

10.1073/pnas.91.8.3077

10.1084/jem.189.5.797

10.1084/jem.189.9.1437

10.4049/jimmunol.166.1.490

10.1126/science.278.5335.117

10.1126/science.7545313

10.1016/S0952-7915(99)80019-3

10.1016/S1074-7613(00)80570-1

Colaco CALS, 1998, Towards a unified theory of immunity: dendritic cells, stress proteins and antigen capture, Cell Mol Biol, 44, 883

Ménoret A, 1995, Co‐segregation of tumor immunogenicity with expression of inducible but not constitutive hsp70 in rat colon carcinomas, J Immunol, 155, 740, 10.4049/jimmunol.155.2.740

10.1093/intimm/13.10.1233

10.1080/0265673021000017109

10.1016/S0301-472X(99)00104-6

10.1515/BC.2003.030

10.1379/1466-1268(2002)007<0365:IOTGIM>2.0.CO;2

Graner M, 2000, Immunoprotective activities of multiple chaperone proteins isolated from murine B‐cell leukemia/lymphoma, Clin Cancer Res, 6, 909

10.1002/1521-4141(200101)31:1<186::AID-IMMU186>3.0.CO;2-D

Castelli C, 2001, Human heat shock protein 70 peptide complexes specifically activate anti‐melanoma T cells, Cancer Res, 61, 222

10.1046/j.1365-2567.2003.01726.x

10.1097/00002371-199311000-00016

10.1016/S0165-2478(97)00048-5

10.1084/jem.186.8.1315

10.1084/jem.187.5.685

Suzue K, 1996, Adjuvant‐free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV‐1 p24, J Immunol, 156, 873, 10.4049/jimmunol.156.2.873

Arnold‐Schild D, 1999, Receptor‐mediated endocytosis of heat shock proteins by professional antigen‐presenting cells, J Immunol, 162, 3757, 10.4049/jimmunol.162.7.3757

10.4049/jimmunol.165.5.2582

10.1016/S1074-7613(01)00111-X

10.1083/jcb.200208083

10.1016/S1074-7613(01)00242-4

10.1016/S1074-7613(02)00388-6

10.1016/S0167-5699(98)01283-3

10.1084/jem.170.2.449

10.1002/eji.1830201118

10.1084/jem.181.3.943

Anderton SM, 1996, Stress Proteins in Medicine., 73

10.4049/jimmunol.165.12.7270

Munk ME, 1989, T lymphocytes from healthy individuals with specificity to self‐epitopes shared by the mycobacterial and human 65‐kilodalton heat shock protein, J Immunol, 143, 2844, 10.4049/jimmunol.143.9.2844

Cohen IR, 1996, Stress Proteins in Medicine., 93

Ramage JM, 1999, T cell responses to heat shock protein 60. differential responses by CD4+ T cell subsets according to their expression of CD45 isotypes, J Immunol, 162, 704, 10.4049/jimmunol.162.2.704

10.1046/j.1365-2567.2000.00966.x

10.1016/S0167-5699(98)80008-X

10.1146/annurev.iy.12.040194.005015

10.1002/jcp.1041380206

10.1074/jbc.275.1.189

10.1038/74697

10.3109/08820139809022710

10.1161/01.HYP.36.2.303

10.1097/00004872-200209000-00027

10.1016/S0014-5793(02)03772-9

10.1074/jbc.M200497200

10.1093/intimm/12.11.1539

10.1084/jem.191.2.403

10.4049/jimmunol.169.5.2422

10.1016/S1471-4906(01)02168-8

10.1046/j.1365-2249.2002.01759.x

10.1074/jbc.M208742200

10.1002/1521-4141(200212)32:12<3708::AID-IMMU3708>3.0.CO;2-C

10.1074/jbc.M303161200

10.1038/35037722

10.1038/37022

10.1016/S0960-9822(98)70438-5

Reiter I, 1999, Cutting edge. differential effect of apoptotic versus necrotic tumor cells on macrophage antitumor activities, J Immunol, 163, 1730, 10.4049/jimmunol.163.4.1730

10.1084/jem.20021215

10.1016/S1074-7613(00)80305-2

Ronchetti A, 1999, Immunogenicity of apoptotic cells in vivo: role of antigen load, antigen‐presenting cells, and cytokines, J Immunol, 163, 130, 10.4049/jimmunol.163.1.130

10.4049/jimmunol.167.9.4844

10.1038/nm0598-581

10.4049/jimmunol.163.3.1398

Gough MJ, 2001, Macrophages orchestrate the immune response to tumor cell death, Cancer Res, 61, 7240

10.1379/1466-1268(2001)006<0121:TIHAAM>2.0.CO;2

10.1182/blood-2002-05-1389

Nylandsted J, 2002, Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion, Cancer Res, 62, 7139

10.1016/S1074-7613(02)00310-2

10.1038/sj.onc.1204948

10.1182/blood-2002-05-1580

10.1006/jmcc.1998.0857

10.1038/77835

10.1084/jem.194.6.781

10.1074/jbc.M109336200

10.4049/jimmunol.169.7.3978

10.1084/jem.192.3.359

10.1002/jlb.66.2.345

10.1084/jem.191.3.423

10.1038/15200