Chế tạo Poly(N-isopropylacrylamide) với Tốc độ Lớn và Giai Đoạn Chuyển Đổi Dễ Dàng Hơn Bằng Phương Pháp Phun Hóa Hơi Hóa Học Tăng Cường Plasma Có Khởi Đầu

Plasma Chemistry and Plasma Processing - Tập 40 - Trang 1063-1079 - 2020
Mehmet Gürsoy1
1Chemical Engineering Department, Konya Technical University, Konya, Turkey

Tóm tắt

Nghiên cứu này trình bày việc chế tạo các màng mỏng poly(N-isopropylacrylamide) (PNIPAAm) nhạy nhiệt bằng phương pháp phun hóa hơi hóa học tăng cường plasma có khởi đầu (i-PECVD), trong đó chất khởi đầu tert-butyl peroxide được sử dụng cùng với monomer NIPAAm. Tốc độ lắng đọng, các tính chất ướt, và nhiệt độ dung dịch lớn nhất thấp (LCST) của PNIPAAm lắng đọng bằng i-PECVD được so sánh với các kỹ thuật PECVD sóng liên tục và xung cổ điển mà không có TBPO. Ảnh hưởng của công suất plasma, chế độ hoạt động plasma, nhiệt độ bề mặt và sự hiện diện của chất khởi đầu đến tốc độ lắng đọng và các tính chất ướt của các màng mỏng PNIPAAm đã được nghiên cứu. Kết quả cho thấy có thể điều chỉnh tốc độ lắng đọng và các tính chất ướt của các màng mỏng PNIPAAm bằng cách thay đổi các thông số PECVD. Tốc độ lắng đọng cao nhất (47.9 nm/phút) và sự khác biệt góc tiếp xúc lớn nhất (18.3°) tùy thuộc vào nhiệt độ đã được đạt được bằng phương pháp i-PECVD. Giá trị LCST của i-PECVD-PNIPAAm có thể được điều chỉnh giữa 31 và 34 °C. Giá trị này phụ thuộc vào sự hiện diện và lượng của chất khởi đầu. Dựa trên những kết quả này, phương pháp i-PECVD có thể được coi là phương pháp thích hợp nhất để sản xuất PNIPAAm với các đặc tính mong muốn.

Từ khóa

#poly(N-isopropylacrylamide) #PNIPAAm #i-PECVD #tốc độ lắng đọng #nhiệt độ dung dịch lớn nhất thấp (LCST) #plasma

Tài liệu tham khảo

Aguilar MR, San Román J (2019) Introduction to smart polymers and their applications. smart polymers and their applications. Elsevier, Amsterdam, pp 1–11 Lu C, Urban MW (2018) Stimuli-responsive polymer nano-science: shape anisotropy, responsiveness, applications. Prog Polym Sci 78:24–46 Zhang K, Wang M, Shi YD, Chen YF, Zeng JB, Huang J (2016) Magnetic responsive polymer nanocomposites with in–situ tunable anisotropy by magnetic self-organization. ChemistrySelect 1(17):5542–5546 Mirza I, Saha S (2019) Fabrication of topologically anisotropic microparticles and their surface modification with pH responsive polymer brush. Mater Sci Eng C 104:109894 Wang W, Zhou M (2010) Degradation of trichloroethylene using solvent-responsive polymer coated Fe nanoparticles. Coll Surf A 369(1–3):232–239 Zhang H, Li J, Cui H, Li H, Yang F (2015) Forward osmosis using electric-responsive polymer hydrogels as draw agents: influence of freezing–thawing cycles, voltage, feed solutions on process performance. Chem Eng J 259:814–819 Guo J, Zhou B, Yang C, Dai Q, Kong L (2019) Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring. Adv Func Mater 29:1902898 Guo Z, Liu H, Wu Y, Wang X, Wu D (2019) Design and fabrication of pH-responsive microencapsulated phase change materials for multipurpose applications. React Funct Polym 140:111–123 Li Y, Li J (2018) Fabrication of reversible thermoresponsive thin films on wood surfaces with hydrophobic performance. Prog Org Coat 119:15–22 Tang Z, Akiyama Y, Itoga K, Kobayashi J, Yamato M, Okano T (2012) Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device. Biomaterials 33(30):7405–7411 Chen Y, An J, Zhong Q, Müller-Buschbaum P, Wang J (2017) Smart control of cotton fabric comfort by cross-linking thermo-responsive poly (2-(2-methoxyethoxy) ethoxyethyl methacrylate-co-ethylene glycol methacrylate). Text Res J 87(13):1620–1630 Gong D, Cao T, Han S-C, Zhu X, Iqbal A, Liu W, Qin W, Guo H (2017) Fluorescence enhancement thermoresponsive polymer luminescent sensors based on BODIPY for intracellular temperature. Sens Actuators B Chem 252:577–583 Balachandra A, Chan EC, Paul JP, Ng S, Chrysostomou V, Ngo S, Mayadunne R, van Wijngaarden P (2019) A biocompatible reverse thermoresponsive polymer for ocular drug delivery. Drug Deliv 26(1):343–353 Zhang P, She P, He J, Xiang Z, Li Z, Cao Y, Zhang X (2019) Full-biodegradable polylactide-based thermoresponsive copolymer with a wide temperature range: synthesis, characterization and thermoresponsive properties. React Funct Polym 142:128–133 Golshaei P, Güven O (2017) Chemical modification of PET surface and subsequent graft copolymerization with poly (N-isopropylacrylamide). React Funct Polym 118:26–34 Prasannan A, Tsai H-C, Hsiue G-H (2018) Formulation and evaluation of epinephrine-loaded poly (acrylic acid-co-N-isopropylacrylamide) gel for sustained ophthalmic drug delivery. React Funct Polym 124:40–47 Alf ME, Hatton TA, Gleason KK (2011) Novel N-isopropylacrylamide based polymer architecture for faster LCST transition kinetics. Polymer 52(20):4429–4434 Ryu H-Y, Yoon SH, Han D-H, Hafeez H, Paluvai NR, Lee CS, Park J-G (2016) Fabrication of hydrophobic/hydrophilic switchable aluminum surface using poly (N-isopropylacrylamide). Prog Org Coat 99:295–301 Guan Y, Zhang Y (2011) PNIPAM microgels for biomedical applications: from dispersed particles to 3D assemblies. Soft Matter 7(14):6375–6384 Nagase K, Yamato M, Kanazawa H, Okano T (2018) Poly (N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials 153:27–48 Weder G, Guillaume-Gentil O, Matthey N, Montagne F, Heinzelmann H, Vörös J, Liley M (2010) The quantification of single cell adhesion on functionalized surfaces for cell sheet engineering. Biomaterials 31(25):6436–6443 Turan E, Caykara T (2011) A facile route to end-functionalized poly (N-isopropylacrylamide) brushes synthesized by surface-initiated SET–LRP. React Funct Polym 71(11):1089–1095 Vachaudez M, D’hooge D, Socka M, Libiszowski J, Coulembier O, Reyniers M-F, Duda A, Marin G, Dubois P (2013) Inverse dependencies on the polymerization rate in atom transfer radical polymerization of N-isopropylacrylamide in aqueous medium. React Funct Polym 73(3):484–491 Tamirisa PA, Hess DW (2006) Water and moisture uptake by plasma polymerized thermoresponsive hydrogel films. Macromolecules 39(20):7092–7097 Koenig M, Rodenhausen KB, Rauch S, Bittrich E, Eichhorn K-J, Schubert M, Stamm M, Uhlmann P (2018) Salt sensitivity of the thermoresponsive behavior of PNIPAAm brushes. Langmuir 34(7):2448–2454 Osváth Z, Tóth T, Iván B (2017) Sustained Drug Release by thermoresponsive Sol–Gel hybrid hydrogels of poly(N-Isopropylacrylamide-co-3-(Trimethoxysilyl) propyl methacrylate) copolymers. Macromol Rapid Commun 38(6):1600724 Elashnikov R, Radocha M, Rimpelova S, Švorčík V, Lyutakov O (2015) Thickness and substrate dependences of phase transition, drug release and antibacterial properties of PNIPAm-co-AAc films. RSC Adv 5(105):86825–86831 Şakalak H, Karaman M (2019) All-dry synthesis of poly (2-ethylhexyl acrylate) nanocoatings using initiated chemical vapor deposition method. Prog Org Coat 132:283–287 Amelio A, Genduso G, Vreysen S, Luis P, Van der Bruggen B (2014) Guidelines based on life cycle assessment for solvent selection during the process design and evaluation of treatment alternatives. Green Chem 16(6):3045–3063 Dion CD, Tavares JR (2013) Photo-initiated chemical vapor deposition as a scalable particle functionalization technology (a practical review). Powder Technol 239:484–491 Cheng C, Gupta M (2018) Roll-to-roll surface modification of cellulose paper via initiated chemical vapor deposition. Ind Eng Chem Res 57(34):11675–11680 Şakalak H, Yılmaz K, Gürsoy M, Karaman M (2020) Roll-to roll initiated chemical vapor deposition of super hydrophobic thin films on large-scale flexible substrates. Chem Eng Sci 215:115466 Yılmaz K, Sakalak H, Gürsoy M, Karaman M (2019) Initiated chemical vapor deposition of poly(Ethylhexyl Acrylate) films in large scale batch reactor. Ind Eng Chem Res 58:14795–14801 Fo Loyer, Combrisson A, Omer K, Moreno-Couranjou M, Choquet P, Boscher ND (2018) Thermoresponsive water-soluble polymer layers and water-stable copolymer layers synthesized by atmospheric plasma initiated chemical vapor deposition. ACS Appl Mater İnterfaces 11(1):1335–1343 Yartaşı Y, Karaman M (2019) Plasma enhanced chemical vapor deposition of poly(Cyclohexyl Methacrylate) as a sacrificial thin film. Plasma Chem Plasma Process 40:1–13 Gorga RE, Lau KK, Gleason KK, Cohen RE (2006) The importance of interfacial design at the carbon nanotube/polymer composite interface. J Appl Polym Sci 102(2):1413–1418 Gürsoy M, Karaman M (2016) Hydrophobic coating of expanded perlite particles by plasma polymerization. Chem Eng J 284:343–350 Truica-Marasescu F, Jedrzejowski P, Wertheimer MR (2004) Hydrophobic recovery of vacuum ultraviolet irradiated polyolefin surfaces. Plasma Process Polym 1(2):153–163 Rupper P, Vandenbossche M, Bernard L, Hegemann D, Heuberger M (2017) Composition and stability of plasma polymer films exhibiting vertical chemical gradients. Langmuir 33(9):2340–2352 Debarnot D, Mérian T, Poncin-Epaillard F (2011) Film chemistry control and growth kinetics of pulsed plasma-polymerized aniline. Plasma Chem Plasma Process 31(1):217–231 Kumar A, Al-Jumaili A, Prasad K, Bazaka K, Mulvey P, Warner J, Jacob MV (2019) Pulse plasma deposition of Terpinen-4-ol: an insight into polymerization mechanism and enhanced antibacterial response of developed thin films. Plasma Chem Plasma Process 40:1–17 Gürsoy M, Karaman M (2018) Improvement of wetting properties of expanded perlite particles by an organic conformal coating. Prog Org Coat 120:190–197 Drews J, Launay H, Hansen CM, West K, Hvilsted S, Kingshott P, Almdal K (2008) Hydrolysis and stability of thin pulsed plasma polymerised maleic anhydride coatings. Appl Surf Sci 254(15):4720–4725 Coclite AM, Gleason KK (2012) Initiated PECVD of organosilicon coatings: a new strategy to enhance monomer structure retention. Plasma Process Polym 9(4):425–434 Teare D, Barwick D, Schofield W, Garrod R, Beeby A, Badyal J (2005) Functionalization of solid surfaces with thermoresponsive protein-resistant films. J Phys Chem B 109(47):22407–22412 Pena-Francesch A, Montero L, Borrós S (2014) Tailoring the LCST of thermosensitive hydrogel thin films deposited by iCVD. Langmuir 30(24):7162–7167 Muralter F, Perrotta A, Coclite AM (2018) Thickness-dependent swelling behavior of vapor-deposited hydrogel thin films. In: Multidisciplinary digital publishing institute proceedings, vol 13, p 757 Salzmann P, Perrotta A, Coclite AM (2018) Different response kinetics to temperature and water vapor of acrylamide polymers obtained by initiated chemical vapor deposition. ACS Appl Mater Interfaces 10(7):6636–6645 Dubey R, Rajesh Y, More M (2015) Synthesis and characterization of SiO2 nanoparticles via sol–gel method for industrial applications. Mater Today Proc 2(4–5):3575–3579 Karaman M, Gürsoy M, Aykül F, Tosun Z, Kars MD, Yildiz HB (2017) Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility. Plasma Sci Technol 19(8):085503 Greczynski G, Hultman L (2019) X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog Mater Sci 107:100591 Scofield JH (1976) Hartree–Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8(2):129–137 Vollmert B (2013) Grundriß der makromolekularen Chemie. Springer, Berlin Yasuda H, Wang CR (1985) Plasma polymerization investigated by the substrate temperature dependence. J Polym Sci Polym Chem Edit 23:87–106. https://doi.org/10.1002/pol.1985.170230110 Godyak V (2011) Electrical and plasma parameters of ICP with high coupling efficiency. Plasma Sources Sci Technol 20(2):025004 d’Agostino R, Cramarossa F, Fracassi F, Illuzzi F (1990) Plasma polymerization of fluorocarbons. Plasma Depos Treat Etch Polym 2:95–162 Gürsoy M, Ucar T, Tosun Z, Karaman M (2016) Initiation of 2-hydroxyethyl methacrylate polymerization by tert-butyl peroxide in a planar PECVD system. Plasma Process Polym 13(4):438–446. https://doi.org/10.1002/ppap.201500091 Karaman M, Gürsoy M, Kus M, Özel F, Yenel E, Sahin ÖG, Kivrak HD (2017) Chemical and physical modification of surfaces. Surf Treat Biol Chem Phys Appl, 23–66 Li J, Zhai M, Yi M, Gao H, Ha H (1999) Radiation grafting of thermo-sensitive poly (NIPAAm) onto silicone rubber. Radiat Phys Chem 55(2):173–178 Sa L, He C (2011) Effect of polymer deposition method on thermoresponsive polymer films and resulting cellular behavior. Langmuir 28(4):2281–2287 Çıtak E, İstanbullu B, Şakalak H, Gürsoy M, Karaman M (2019) All-Dry hydrophobic functionalization of paper surfaces for efficient transfer of CVD graphene. Macromol Chem Phys 220(22):1900277 Clodt JI, Filiz V, Rangou S, Buhr K, Abetz C, Höche D, Hahn J, Jung A, Abetz V (2013) Double stimuli-responsive isoporous membranes via post-modification of pH-sensitive self-assembled diblock copolymer membranes. Adv Func Mater 23(6):731–738 Alf ME, Hatton TA, Gleason KK (2011) Insights into thin, thermally responsive polymer layers through quartz crystal microbalance with dissipation. Langmuir 27(17):10691–10698 Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222 Xia Y, Burke NA, Stöver HD (2006) End group effect on the thermal response of narrow-disperse poly (N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 39(6):2275–2283 Cui Y, Tao C, Tian Y, He Q, Li J (2006) Synthesis of PNIPAM-co-MBAA copolymer nanotubes with composite control. Langmuir 22(19):8205–8208 Lima AC, Song W, Blanco-Fernandez B, Alvarez-Lorenzo C, Mano JF (2011) Synthesis of temperature-responsive dextran-MA/PNIPAAm particles for controlled drug delivery using superhydrophobic surfaces. Pharm Res 28(6):1294–1305 Beamson G, Briggs D (1993) High resolution XPS of organic polymers: the Scienta ESCA300 Database. J Chem Educ 70(1):A25. https://doi.org/10.1021/ed070pa25.5 Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33(11):1088–1118 Yavuz MS, Citir M, Cavusoglu H, Demirel G (2017) Measuring temperature change at the nanometer scale on gold nanoparticles by using thermoresponsive PEGMA polymers. ChemNanoMat 3(7):496–502 Kotsuchibashi Y, Narain R (2014) Dual-temperature and pH responsive (ethylene glycol)-based nanogels via structural design. Polymer Chemistry 5(8):3061–3070