Mô phỏng FEM của chất lỏng nhớt không nén tĩnh không

Emerald - 2006
Aldo Tralli1, Paolo Gaudenzi1
1Dipartimento di Ingegneria Aerospaziale e Astronautica, Università di Roma “La Sapienza”, Roma, Italy

Tóm tắt

Mục đíchTrình bày một phương pháp số để giải hệ phương trình Navier-Stokes không ổn định và không nén trong một thiết lập tổng quát.Thiết kế/phương pháp/tiếp cậnCác phương trình được rời rạc hóa theo không gian bằng phương pháp phần tử hữu hạn, và theo thời gian bằng một sơ đồ sai phân nửa ẩn, sử dụng phương pháp bước phân để đảm bảo tính không nén.Kết quảCác kết quả được trình bày cho thấy độ chính xác thỏa mãn của phương pháp trong việc mô phỏng các dòng chảy xoáy trong chế độ laminar và sự ổn định của giải pháp trong sự hiện diện của lớp biên mạnh.Tính sáng tạo/giá trịSự tích hợp thành công của CFD vào thiết kế công nghiệp phụ thuộc vào khả năng cung cấp các mô phỏng chính xác và đáng tin cậy cho các ứng dụng thực tế. Những cân nhắc này thúc đẩy sự phát triển của phương pháp được đề xuất: nó có thể được sử dụng kết hợp với các phần tử hữu hạn của bất kỳ độ chính xác nào, cung cấp kết quả chính xác và ổn định về mặt số cho các dòng chảy phức tạp. Hơn nữa, các yêu cầu tính toán thấp khi so sánh với các chiến lược tương tự khác.

Từ khóa


Tài liệu tham khảo

Armaly, F., Durst, F., Pereira, J.C.F. and Schonung, B. (1983), “Experimental and theoretical investigation of backward facing step flow”, Journal of Fluid Mechanics, Vol. 127, pp. 473‐96. Arnold, D.N., Brezzi, F. and Fortin, M. (1984), “A stable finite element for the stokes equations”, Calcolo, Vol. 23, pp. 337‐44. Bathe, K.J. (1995), Finite Element Procedures, Prentice‐Hall, Englewood Cliffs, NJ. Bathe, K.J. and Zhang, H. (2002), “A flow‐condition‐based interpolation finite element procedure for incompressible fluid flows”, Computers & Structures, Vol. 80, pp. 1267‐77. Brezzi, F. (1974), “On the existence, uniqueness and approximation of sadd‐le point problems arising from Lagrangian multipliers”, RAIRO, Vol. 8, pp. 129‐51. Brezzi, F. and Douglas, J. (1988), “Stabilized mixed methods for the Stokes problem”, Num. Math., Vol. 53, pp. 225‐35. Brezzi, F. and Fortin, M. (1991), Mixed and Hybrid Finite Element Methods, Springer‐Verlag, New York, NY. Brezzi, F. and Pitkäranta, J. (1984), “On the stabilization of finite element approximations of the Stokes equations”, in Hackbusch, W. (Ed.), Efficient Solutions of Elliptic Systems, Vieweg, Braunschweig, pp. 11‐9. Brooks, A.N. and Hughes, T.J.R. (1982), “Streamline upwind/Petrov‐Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier‐Stokes equations”, Comput. Methods Appl. Mech. Eng., Vol. 32, pp. 199‐259. Brown, D.L., Cortez, R. and Minion, M.L. (2001), “Accurate projection methods for the incompressible Navier‐Stokes equations”, Journal of Computational Physics, Vol. 168, pp. 464‐99. Chorin, A.J. (1968), “Numerical solution of the Navier‐Stokes equations”, Math. Comput., Vol. 22. Chorin, A.J. (1969), “On the convergence of discrete approximations to the Navier‐Stokes equations”, Math. Comput., Vol. 23. Guermond, J.L. and Quartapelle, L. (1997), “Calculation of incompressible viscous flows by an unconditionally stable projection FEM”, J. Comp. Phys., Vol. 132. Hughes, T.J.R., Franca, L.P. and Balestra, M. (1986), “A new finite element formulation for computational fluid mechanics: V. Circumventing the Babuska‐Brezzi condition: a stable Petrov‐Galerkin formulation of the Stokes problem accommodating equal order interpolation”, Comput. Methods Appl. Mech. Eng., Vol. 59, pp. 85‐99. Hughes, T.J.R., Franca, L.P. and Hulbert, G.M. (1989), “A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least‐squares method for advective‐diffusive equations”, Comput. Methods Appl. Mech. Eng., Vol. 73 No. 2, pp. 173‐89. Johnson, C. and Pitkäranta, J. (1986), “An analysis of discontinuous Galerkin methods for scalar hyperbolic equations”, Math. Comp., Vol. 46, pp. 1‐26. Kim, J. and Moin, P. (1985), “Application of a fractional‐step method to incompressible Navier‐Stokes equations”, J. Comp. Phys., Vol. 59, pp. 308‐14. Orlandi, P. (1989), A Numerical Method for Direct Simulation of Turbulence in Complex Geometries, Annual Research Briefs, Stanford University, Stanford, CA, pp. 215‐29. Orlandi, P. (1999), Fluid Flow Phenomena: A Numerical Toolkit, Kluwer Academic Publishers, Dordrecht. Perot, B. (1993), “An analysis of the fractional step method”, Journal of Computational Physics, Vol. 108, pp. 51‐8. Pullin, D.I. and Perry, A.E. (1980), “Some flow visualization experiments on the starting vortex”, J. Fluid Mech., Vol. 97, pp. 239‐55. Quarteroni, A., Saleri, F. and Veneziani, A. (1999), “Analysis of the Yosida method for the incompressible Navier‐Stokes equations”, J. Math. Pures Appl., Vol. 78. Rai, M. and Moin, P. (1991), “Direct simulation of turbulent flow using finite difference schemes”, J. Comput. Phys., Vol. 96. Temam, R. (1969), “Sur l'approximation de la solution des equations de Navier‐Stokes par la methode des pas fractionnaires, II”, Arch. Rational Mech. Anal., Vol. 33. Timmermans, L.J.P., Minev, P.D. and Van De Vosse, F.N. (1996), “An approximate projection scheme for incompressible flow using spectral elements”, Int. J. Numer. Methods for Fluids, Vol. 22. Tralli, A. (2005), “A FEM framework for fluid‐structure interaction phenomena”, PhD thesis. Verzicco, R. and Orlandi, P. (1996), “A finite‐difference scheme for three‐dimensional incompressible flows in cylindrical coordinates”, J. Comput. Phys., Vol. 123.