Extrinsic and intrinsic regulation of DOR/TP53INP2 expression in mice: effects of dietary fat content, tissue type and sex in adipose and muscle tissues
Nutrition & Metabolism - 2012
Tóm tắt
DOR/TP53INP2 acts both at the chromosomal level as a nuclear co-factor e.g. for the thyroid hormone receptor and at the extrachromosomal level as an organizing factor of the autophagosome. In a previous study, DOR was shown to be down-regulated in skeletal muscle of obese diabetic Zucker fa/fa rats. To identify sites of differential DOR expression in metabolically active tissues, we measured differences in DOR expression in white adipose tissue (WAT), brown adipose tissue (BAT), skeletal muscle (SM) and heart muscle (HM) by qPCR. To assess whether DOR expression is influenced in the short term by nutritional factors, NMRI mice were fed different fat rich diets (fat diet, FD: 18% or high fat diet, HFD: 80% fat) for one week and DOR expression was compared to NMRI mice fed a control diet (normal diet, ND: 3.3% fat). Additionally, DOR expression was measured in young (45 days old) and adult (100 days old) genetically obese (DU6/DU6i) mice and compared to control (DUKs/DUKsi) animals. ANOVA results demonstrate a significant influence of diet, tissue type and sex on DOR expression in adipose and muscle tissues of FD and HFD mice. In SM, DOR expression was higher in HFD than in FD male mice. In WAT, DOR expression was increased compared to BAT in male FD and HFD mice. In contrast, expression levels in female mice were higher in BAT for both dietary conditions. DOR expression levels in all tissues of 100 days old genetically obese animals were mainly influenced by sex. In HM, DOR expression was higher in male than female animals. DOR expression varies under the influence of dietary fat content, tissue type and sex. We identified target tissues for further studies to analyze the specific function of DOR in obesity. DOR might be part of a defense mechanism against fat storage in high fat diets or obesity.
Từ khóa
Tài liệu tham khảo
Obregon M-J: Thyroid hormone and adipocyte differentiation. Thyroid. 2008, 18: 185-195. 10.1089/thy.2007.0254.
Laclaustra M, Corella D, Ordovas JM: Metabolic syndrome pathophysiology: the role of adipose tissue. Nutr Metab Cardiovasc Dis. 2007, 17: 125-139. 10.1016/j.numecd.2006.10.005.
Ukropec J, Ukropcova B, Kurdiova T, Gasperikova D, Klimes I: Adipose tissue and skeletal muscle plasticity modulates metabolic health. Arch Physiol Biochem. 2008, 114: 357-368. 10.1080/13813450802535812.
Gesta S, Tseng Y-H, Kahn CR: Developmental origin of fat: tracking obesity to its source. Cell. 2007, 131: 242-256. 10.1016/j.cell.2007.10.004.
Du M, Yan X, Tong JF, Zhao J, Zhu MJ: Maternal obesity, inflammation, and fetal skeletal muscle development. Biol Reprod. 2010, 82: 4-12. 10.1095/biolreprod.109.077099.
Dyck DJ, Heigenhauser GJF, Bruce CR: The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol (Oxf). 2006, 186: 5-16. 10.1111/j.1748-1716.2005.01502.x.
Karjalainen J, Tikkanen H, Hernelahti M, Kujala UM: Muscle fiber-type distribution predicts weight gain and unfavorable left ventricular geometry: a 19 year follow-up study. BMC Cardiovasc Disord. 2006, 6: 2-10.1186/1471-2261-6-2.
Lu C, Cheng S-Y: Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors. J Mol Endocrinol. 2010, 44: 143-154. 10.1677/JME-09-0107.
Baumgartner BG, Orpinell M, Duran J, Ribas V, Burghardt HE, Bach D, Villar AV, Paz JC, González M, Camps M, Oriola J, Rivera F, Palacín M, Zorzano A: Identification of a novel modulator of thyroid hormone receptor-mediated action. PLoS One. 2007, 2: e1183-10.1371/journal.pone.0001183.
Grover GJ, Mellström K, Malm J: Therapeutic potential for thyroid hormone receptor-beta selective agonists for treating obesity, hyperlipidemia and diabetes. Curr Vasc Pharmacol. 2007, 5: 141-154. 10.2174/157016107780368271.
Linares GR, Xing W, Burghardt H, Baumgartner B, Chen S-T, Ricart W, Fernández-Real JM, Zorzano A, Mohan S: Role of diabetes- and obesity-related protein in the regulation of osteoblast differentiation. Am J Physiol Endocrinol Metab. 2011, 301: E40-E48. 10.1152/ajpendo.00065.2011.
Malik IA, Baumgartner BG, Naz N, Sheikh N, Moriconi F, Ramadori G: Changes in gene expression of DOR and other thyroid hormone receptors in rat liver during acute-phase response. Cell Tissue Res. 2010, 342: 261-272. 10.1007/s00441-010-1067-4.
Mauvezin C, Orpinell M, Francis VA, Mansilla F, Duran J, Ribas V, Palacín M, Boya P, Teleman AA, Zorzano A: The nuclear cofactor DOR regulates autophagy in mammalian and Drosophila cells. EMBO Rep. 2010, 11: 37-44. 10.1038/embor.2009.242.
Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S: Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA. 2009, 106: 19860-19865.
Yang L, Li P, Fu S, Calay ES, Hotamisligil GS: Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010, 11: 467-478. 10.1016/j.cmet.2010.04.005.
Brockmann GA, Haley CS, Renne U, Knott SA, Schwerin M: Quantitative trait loci affecting body weight and fatness from a mouse line selected for extreme high growth. Genetics. 1998, 150: 369-381.
Brockmann GA, Kratzsch J, Haley CS, Renne U, Schwerin M, Karle S: Single QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F(2) variance of growth and obesity in DU6i x DBA/2 mice. Genome Res. 2000, 10: 1941-1957. 10.1101/gr.GR1499R.
Peters IR, Helps CR, Hall EJ, Day MJ: Real-time RT-PCR: considerations for efficient and sensitive assay design. J Immunol Methods. 2004, 286: 203-217. 10.1016/j.jim.2004.01.003.
Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L, Ståhlberg A, Zoric N: The real-time polymerase chain reaction. Mol Aspects Med. 2006, 27: 95-125. 10.1016/j.mam.2005.12.007.
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3: 1-12.
Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL: A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA. 1992, 89: 1827-1831. 10.1073/pnas.89.5.1827.
R Development Core Team: R: A language and environment for statistical computing. 2012, R Foundation for Statistical Computing, Vienna, Austria,http://www.R-project.org,
Chambers J, Freeny A, Heiberger R: Analysis of variance; designed experiments. Statistical Models in S. Pacific GRove. 1992, Wadsworth & Broos/Cole, California
Araujo RL, Andrade BM, Padrón AS, Gaidhu MP, Perry RLS, Carvalho DP, Ceddia RB: High-fat diet increases thyrotropin and oxygen consumption without altering circulating 3,5,3’-triiodothyronine (T3) and thyroxine in rats: the role of iodothyronine deiodinases, reverse T3 production, and whole-body fat oxidation. Endocrinology. 2010, 151: 3460-3469. 10.1210/en.2010-0026.
de Wilde J, Mohren R, van den Berg S, Boekschoten M, Dijk KW-V, de Groot P, Müller M, Mariman E, Smit E: Short-term high fat-feeding results in morphological and metabolic adaptations in the skeletal muscle of C57BL/6J mice. Physiol Genomics. 2008, 32: 360-369.
Hageman RS, Wagener A, Hantschel C, Svenson KL, Churchill GA, Brockmann GA: High-fat diet leads to tissue-specific changes reflecting risk factors for diseases in DBA/2J mice. Physiol Genomics. 2010, 42: 55-66. 10.1152/physiolgenomics.00072.2009.
Koza RA, Nikonova L, Hogan J, Rim J-S, Mendoza T, Faulk C, Skaf J, Kozak LP: Changes in gene expression foreshadow diet-induced obesity in genetically identical mice. PLoS Genet. 2006, 2: e81-10.1371/journal.pgen.0020081.
Bastemir M, Akin F, Alkis E, Kaptanoglu B: Obesity is associated with increased serum TSH level, independent of thyroid function. Swiss Med Wkly. 2007, 137: 431-434.
Gesta S, Blüher M, Yamamoto Y, Norris AW, Berndt J, Kralisch S, Boucher J, Lewis C, Kahn CR: Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci USA. 2006, 103: 6676-6681. 10.1073/pnas.0601752103.
Liu Y-Y, Schultz JJ, Brent GA: A thyroid hormone receptor alpha gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine-stimulated lipolysis in mice. J Biol Chem. 2003, 278: 38913-38920. 10.1074/jbc.M306120200.
Ying H, Araki O, Furuya F, Kato Y, Cheng S-Y: Impaired adipogenesis caused by a mutated thyroid hormone alpha1 receptor. Mol Cell Biol. 2007, 27: 2359-2371. 10.1128/MCB.02189-06.
Weitzel JM, Hamann S, Jauk M, Lacey M, Filbry A, Radtke C, Iwen KAH, Kutz S, Harneit A, Lizardi PM, Seitz HJ: Hepatic gene expression patterns in thyroid hormone-treated hypothyroid rats. J Mol Endocrinol. 2003, 31: 291-303. 10.1677/jme.0.0310291.
Weitzel JM, Iwen KA: Coordination of mitochondrial biogenesis by thyroid hormone. Mol Cell Endocrinol. 2011, 342: 1-7. 10.1016/j.mce.2011.05.009.
Buettner R, Parhofer KG, Woenckhaus M, Wrede CE, Kunz-Schughart LA, Schölmerich J, Bollheimer LC: Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol. 2006, 36: 485-501. 10.1677/jme.1.01909.
van Dijk SJ, Feskens EJM, Bos MB, Hoelen DWM, Heijligenberg R, Bromhaar MG, de Groot LCPGM, de Vries JHM, Müller M, Afman LA: A saturated fatty acid-rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome. Am J Clin Nutr. 2009, 90: 1656-1664. 10.3945/ajcn.2009.27792.
Nakai Y, Hashida H, Kadota K, Minami M, Shimizu K, Matsumoto I, Kato H, Abe K: Up-regulation of genes related to the ubiquitin-proteasome system in the brown adipose tissue of 24-h-fasted rats. Biosci Biotechnol Biochem. 2008, 72: 139-148. 10.1271/bbb.70508.
Park J-J, Berggren JR, Hulver MW, Houmard JA, Hoffman EP: GRB14, GPD1, and GDF8 as potential network collaborators in weight loss-induced improvements in insulin action in human skeletal muscle. Physiol Genomics. 2006, 27: 114-121. 10.1152/physiolgenomics.00045.2006.
Ueta CB, Olivares EL, Bianco AC: Responsiveness to thyroid hormone and to ambient temperature underlies differences between brown adipose tissue and skeletal muscle thermogenesis in a mouse model of diet-induced obesity. Endocrinology. 2011, 152: 3571-3581. 10.1210/en.2011-1066.
Hernández A, Obregón MJ: Triiodothyronine amplifies the adrenergic stimulation of uncoupling protein expression in rat brown adipocytes. Am J Physiol Endocrinol Metab. 2000, 278: E769-E777.
Weitzel JM, Iwen KAH, Seitz HJ: Regulation of mitochondrial biogenesis by thyroid hormone. Exp Physiol. 2003, 88: 121-128. 10.1113/eph8802506.
Marín-García J: Thyroid hormone and myocardial mitochondrial biogenesis. Vascul Pharmacol. 2010, 52: 120-130. 10.1016/j.vph.2009.10.008.
Tanaka T, Morita H, Koide H, Kawamura K, Takatsu T: Biochemical and morphological study of cardiac hypertrophy. Effects of thyroxine on enzyme activities in the rat myocardium. Basic Res Cardiol. 1985, 80: 165-174. 10.1007/BF01910464.
Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, Drake TA, Lusis AJ: Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006, 16: 995-1004. 10.1101/gr.5217506.
Grove KL, Fried SK, Greenberg AS, Xiao XQ, Clegg DJ: A microarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice. Int J Obes (Lond). 2010, 34: 989-1000. 10.1038/ijo.2010.12.
Macotela Y, Boucher J, Tran TT, Kahn CR: Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes. 2009, 58: 803-812. 10.2337/db08-1054.
Schiaffino S, Reggiani C: Fiber types in mammalian skeletal muscles. Physiol Rev. 2011, 91: 1447-1531. 10.1152/physrev.00031.2010.