Extremely low surface recombination in 1 Ω cm n‐type monocrystalline silicon

Ruy S. Bonilla1,2, Christian Reichel3, Martin Hermle3, Peter R. Wilshaw1
1Department of Materials, University of Oxford, Parks Rd, OX1 3PH Oxford, United Kingdom
2Phone: +44 1865 283097,
3Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany

Tóm tắt

A key requirement in the recent development of highly efficient silicon solar cells is the outstanding passivation of their surfaces. In this work, plasma enhanced chemical vapour deposition of a triple layer dielectric consisting of amorphous silicon, silicon oxide and silicon nitride, charged extrinsically using corona, has been used to demonstrate extremely low surface recombination. Assuming Richter's parametrisation for bulk lifetime, an effective surface recombination velocity Seff = 0.1 cm/s at Δn = 1015 cm–3 has been obtained for planar, float zone, n ‐type, 1 Ω cm silicon. This equates to a saturation current density J0s = 0.3 fA/cm2, and a 1‐sun implied open‐circuit voltage of 738 mV. These surface recombination parameters are among the lowest reported for 1 Ω cm c‐Si. A combination of impedance spectroscopy and corona‐lifetime measurements shows that the outstanding chemical passivation is due to the small hole capture cross section for states at the interface between the Si and a‐Si layer which are hydrogenated during nitride deposition. (© 2016 The Authors. Phys. Status Solidi RRL published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Từ khóa


Tài liệu tham khảo

10.1063/1.121211

10.1063/1.2240736

10.1063/1.1350633

10.1109/16.841230

10.1063/1.370784

R. S.Bonilla P. G.Hamer andP. R.Wilshaw in: EUPVSEC Munich Germany 2016 pp. 707–710.

10.1063/1.4882161

10.1063/1.4892099

10.1002/(SICI)1099-159X(199807/08)6:4<259::AID-PIP215>3.0.CO;2-Z

G. M.Sessler Electrets 2nd ed. (Springer Berlin 1987).

10.4028/www.scientific.net/SSP.242.67

der Pauw L. J., 1958, Philips Tech. Rev, 20, 220

10.1063/1.3544421

R. S.Bonilla C.Reichel M.Hermle S.Senkader andP.Wilshaw in: IEEE 40th Photovolt. Spec. Conf. IEEE 2014 pp. 0571–0576.

R. S.Bonilla N.Jennison D.Clayton‐Warwick K. A.Collett L.Rands andP. R.Wilshaw Energy Procedia in press (2016).

10.1063/1.1754385

10.1063/1.322138

10.1016/S0038-1101(97)00202-5

S. M.SzeandK. K.Ng Physics of Semiconductor Devices (Wiley Hoboken New Jersey 2007).

10.1103/PhysRevB.86.165202

P. P.Altermatt F.Geelhaar T.Trupke X.Dai A.Neisser andE.Daub in: NUSOD '05 Proc. 5th Int. Conf. Numer. Simul. Optoelectron. Devices IEEE 2005 pp. 47–48.

10.1063/1.1610231

10.1109/JPHOTOV.2013.2284375

10.1063/1.4886595

10.1002/pip.2167

10.1063/1.1416134

E. H.NicollianandJ. R.Brews MOS (Metal Oxide Semiconductor) – Physics and Technology (Wiley New York 1982).

D. K.Schroder Semiconductor Material and Device Characterization (John Wiley &Sons Inc. 2006).

10.1063/1.4871075

10.1063/1.1861138

10.1103/PhysRevB.85.113302

10.1063/1.2432297

R. S.BonillaandP. R.Wilshaw J. Appl. Phys. under review (2016).

10.1063/1.370784

10.1109/JPHOTOV.2012.2215014

10.1063/1.4827821

10.1088/0268-1242/17/1/306