Extraction of Spectral Information from Hyperspectral Data and Application of Hyperspectral Imaging for Food and Agricultural Products
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akbari H., Halig L.V., Zhang H., Wang D., Chen Z.G. & Fei B. (2012) Detection of cancer metastasis using a novel macroscopic hyperspectral method. In: Proceedings of the SPIE Volume 8317 Medical Imaging 2012: Biomedical Applications in Molecular, Structural, and Functional Imaging, 23 March 2012, Paper No. 831711, San Diego, California, USA.
Albers, B., DiBenedetto, J., Lutz, S., & Purdy, C. (1995). More efficient environmental monitoring with laser-induced fluorescence imaging. Biophotonics International Magazine, 2(6), 42–54.
Amigo, J. M., & Ravn, C. (2009). Direct quantification and distribution assessment of major and minor components in pharmaceutical tablets by NIR-chemical imaging. European Journal of Pharmaceutical Sciences, 37(2), 76–82.
Amigo, J. M. (2010). Practical issues of hyperspectral imaging analysis of solid dosage forms. Analytical Bioanalytical Chemistry, 398(1), 93–109.
Amigo, J. M., Cruz, J., Bautista, M., Maspoch, S., Coello, J., & Blanco, M. (2008). Study of pharmaceutical samples by NIR chemical-image and multivariate analysis. Trends in Analytical Chemistry, 27(8), 696–713.
Anderson, N. M., & Walker, P. N. (2003). Measuring fat content of ground beef stream using on-line visible/NIR spectroscopy. Transactions of the ASAE, 46(1), 117–124.
Andersson, C. A. (1999). Direct orthogonalization. Chemometrics and Intelligent Laboratory Systems, 47(1), 51–63.
Anonymous (2013) Hyperspectral imaging. Hyperspectral imaging: components and systems catalog, Middleton Research, Middleton, WI, USA, Available at: www.middletonresearch.com/pdfs/3-HSI.pdf. Accessed 21 November 2013.
Ariana, D. P., & Lu, R. (2010). Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging. Journal of Food Engineering, 96(4), 583–590.
Ariana, D. P., Lu, R., & Guyer, D. E. (2006). Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers. Computers and Electronics in Agriculture, 53(1), 60–70.
Baker, J. E., Dowell, F. E., & Throne, J. E. (1999). Detection of parasitized rice weevils in wheat kernels with near-infrared spectroscopy. Biological Control, 16, 88–90.
Baker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17(3), 166–173.
Ballabio D & Todeschini R (2009) Multivariate classification for qualitative analysis. Sun Infrared Spectroscopy for Food Quality Analysis and Control, pp 83–104. Academic press, Burlington, USA.
Baranowski, P., Mazurek, W., Wozniak, J., & Majewska, U. (2012). Detection of early bruises in apples using hyperspectral data and thermal imaging. Journal of Food Engineering, 110(3), 345–355.
Barbin, D., ElMasry, G., Sun, D.-W., & Allen, P. (2012). Near-infrared hyperspectral imaging for grading and classification of pork. Meat Science, 90(1), 259–268.
Barbin, D. F., ElMasry, G., Sun, D.-W., & Allen, P. (2013). Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. Food Chemistry, 138(2–3), 1162–1171.
Barnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43(5), 772–777.
Bauriegel, E., Giebel, A., Geyer, M., Schmidt, U., & Herppich, W. B. (2011). Early detection of Fusarium infection in wheat using hyperspectral imaging. Computers & Electronics in Agriculture, 75(2), 304–312.
Beghi, R., Spinardi, A., Bodria, L., Mignani, I., & Guidetti, R. (2013). Apples nutraceutic properties evaluation through a visible and near-infrared portable system. Food and Bioprocess Technology, 6(9), 2547–2554.
Borengasser, M., Hungate, W. S., & Watkins, R. (2007). Hyperspectral remote sensing: principles and applications. Boca Raton, USA: CRC Press.
Botchko V, Berina E, Korotkaya Z, Parkkinen J & Jaaskelainen, T (2003) Independent component analysis in spectral images. 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA 2003), 1–4 April 2003, Nara, Japan.
Boysworth, M. K., & Booksh, K. S. (2007). Aspects of multivariate calibration applied to near-infrared spectroscopy. In Ciurczak & Burns (Eds.), Handbook of near-infrared analysis (3rd ed., pp. 207–229). Boca Raton, USA: CRC Press.
Brosnan, T., & Sun, D.-W. (2004). Improving quality inspection of food products by computer vision-a review. Journal of Food Engineering, 61(1), 3–16.
Brown, C. D., Vega-Montoto, L., & Wentzell, P. D. (2000). Derivatives preprocessing and optimal corrections for baseline drift in multivariate calibration. Applied Spectroscopy, 54(7), 1055–1068.
Buddenbaum, H., & Steffens, M. (2012). The effect of spectral pretreatments on chemometrics analyses of soil profile using laboratory imaging spectroscopy. Applied and Environmental Soil Science, Article ID, 274903, 1–12.
Bulanon, D. M., Burks, T. F., Kim, D. G., & Ritenour, M. A. (2013). Citrus black spot detection using hyperspectral image analysis. Agricultural Engineering International: CIGR Journal, 15(3), 171–180.
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167.
Centner, V., Massart, D. L., & de Noord, O. E. (1996). Detection of inhomogeneities in sets of NIR spectra. Analytica Chimica Acta, 330(1), 1–17.
Du, C., Ma Z., Zhou J., Goyne K.W. (2013). Application of mid-infrared photoacoustic spectroscopy inmonitoring carbonate content in soils. Sensors and Actuators B, 188, 1167–1175.
Chappelle, E. W., McMurtrey III, J. E., & Kim, M. S. (1991). Identification of the pigment responsible for the blue fluorescence band in laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis. Remote Sensing of Environment, 36(3), 213–218.
Chappelle, E. W., Wood, F. M., McMurtrey III, J. E., & Newcomb, W. W. (1984). Laser induced fluorescence of green plants. 1: a technique for the remote detection of plant stress and species differentiation. Applied Optics, 23(1), 134–138.
Chen, Y.-N., Sun, D.-W., Cheng, J.-H., & Gao, W.-H. (2016). Recent advances for rapid identification of chemical information of muscle foods by hyperspectral imaging analysis. Food Engineering Reviews, 8(3), 336–350.
Chen, Y.-R., Chao, K., & Kim, M. S. (2002). Machine vision technology for agricultural applications. Computers and Electronics in Agriculture, 36(2–3), 173–191.
Chen, Z. P., Morris, J., & Martin, E. (2006). Extracting chemical information from spectral data with multiplicative light scattering effects by optical path-length estimation and correction. Analytical Chemistry, 78(22), 7674–7681.
Cheng, W., Sun, D.-W., & Cheng, J.-H. (2016). Pork biogenic amine index (BAI) determination based on chemometric analysis of hyperspectral imaging data. LWT-Food Science and Technology, 73, 13–19.
Cheng, X., Chen, Y. R., Tao, Y., Wang, C. Y., Kim, M. S., & Lefcourt, A. M. (2004). A novel integrated PCA and FLD method on hyperspectral image feature extraction for cucumber chilling damage inspection. Transactions of the ASAE, 47(4), 1313–1320.
Cho, B.-K., Kim, M. S., Baek, I.-S., Kim, D.-Y., Lee, W.-H., Kim, J., Bae, H., & Kim, Y.-S. (2013). Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence imagery. Postharvest Biology and Technology, 76, 40–49.
Choudhary, R., Mahesh, S., Paliwal, J., & Jayas, D. S. (2009). Identification of wheat classes using wavelet features from near infrared hyperspectral images of bulk samples. Biosystems Engineering, 102(2), 115–127.
Clark, D., & Sasic, S. (2006). Chemical images: technical approaches and issues. Cytometry Part A, 69A(8), 815–824.
Cloarec, O., Dumas, M. E., Craig, A., Barton, R. H., Trygg, J., Hudson, J., Blancher, C., Gauguier, D., Lindon, J. C., Holmes, E., & Nicholson, J. (2005). Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Analytical Chemistry, 77(5), 1282–1289.
Cogdill, R. P., Hurburgh Jr., C. R., Rippke, G. R., Bajic, S. J., Jones, R. W., McClelland, J. F., Jensen, T. C., & Liu, J. (2004). Single-kernel maize analysis by near-infrared hyperspectral imaging. Transactions of the ASAE, 47(1), 311–320.
Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20(3), 273–297.
Dacal-Nieto A, Formella A, Carrión P, Vazquez-Fernandez E & Fernández-Delgado M (2011) Non-destructive detection of hollow heart in potatoes using hyperspectral Imaging. In: Berciano et al. (eds) Proceedings of the 14th International Conference on Computer Analysis of Images and Pattern (CAIP 2011), Part II, 29–31 August 2011, pp 180–187, Seville, Spain.
De Temmerman, J., Saeys, W., Nicolai, B., & Ramon, H. (2007). Near infrared reflectance spectroscopy as a tool for the in-line determination of the moisture concentration in extruded semolina pasta. Biosystems Engineering, 97(3), 313–321.
Delwiche, S. R., Kim, M. S., & Dong, Y. (2011). Fusarium damage assessment in wheat kernels by Vis/NIR hyperspectral imaging. Sensing and Instrumentation for Food Quality and Safety, 5(2), 63–71.
Dhanoa, M. S., Lister, S. J., Sanderson, R., & Barnes, R. J. (1994). The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. Journal of Near Infrared Spectroscopy, 2(1), 43–47.
Ding C & He X (2004) K-means clustering via principal component analysis. In: Brodley (ed) Proceedings of the 21st International Conference on Machine Learning, 4–8 July 2004, Banff, Canada.
Donovan, J. J., Snyder, D. A., & Rivers, M. L. (1993). An improved interference correction for trace element analysis. Microbeam Analysis, 2, 23–28.
Dowell, F. E. (2000). Differentiating vitreous and nonvitreous of durum wheat kernels by using near-infrared spectroscopy. Cereal Chemistry, 77(2), 155–158.
Du, C.-J., & Sun, D.-W. (2004). Recent developments in the applications of image processing techniques for food quality evaluations. Trends in Food Science & Technology, 15(5), 230–249.
Du H, Qi H, Wang X, Ramanath R & Snyder, WE (2003) Band selection using independent component analysis for hyperspectral image processing. In: Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, 15–17 October 2003, Washington, USA.
Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd edition). New York, USA: Wiley–Interscience.
ElMasry, G. & Sun D.-W. (2010) Principles of hyperspectral imaging technology. In: Sun Hyperspectral Imaging for Food Quality Analysis and Control (1st edition), pp 3–43. Academic Press, London, UK.
ElMasry, G., Iqbal, A., Sun, D.-W., Allen, P., & Ward, P. (2011). Quality classification of cooked, sliced Turkey hams using NIR hyperspectral imaging system. Journal of Food Engineering, 103(3), 333–344.
ElMasry, G., Kamruzzaman, M., Sun, D.-W., & Allen, P. (2012a). Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Critical Reviews in Food Science and Nutrition, 52(11), 999–1023.
ElMasry, G., Sun, D.-W., & Allen, P. (2012b). Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. Journal of Food Engineering, 110(1), 127–140.
ElMasry, G., Wang, N., ElSayed, A., & Ngadi, M. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering, 81(1), 98–107.
Eluyode, O. S., & Akomolafe, D. T. (2013). Comparative study of biological and artificial neural networks. European Journal of Applied Engineering and Scientific Research, 2(1), 36–46.
Feng, Y.-Z., & Sun, D.-W. (2012). Determination of total viable count (TVC) in chicken breast fillets by near-infrared hyperspectral imaging and spectroscopic transforms. Talanta, 105, 244–249.
Fernández-Ahumada, E., Garrido-Varo, A., & Guerrero-Ginel, J. E. (2008). Feasibility of diode-array instruments to carry near-infrared spectroscopy from laboratory to feed process control. Journal of Agricultural and Food Chemistry, 56(9), 3185–3192.
Firrao, G., Torelli, E., Gobbi, E., Raranciuc, S., Bianchi, G., & Locci, R. (2010). Prediction of milled maize fumonisin contamination by multispectral image analysis. Journal of Cereal Science, 52(2), 327–330.
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179–188.
Fletcher JT & Kong SG (2003) Principal component analysis for poultry tumor inspection using hyperspectral fluorescence imaging. In Proceedings of the IEEE International Joint Conference on Neural Networks, Volume 1, 20–24 July 2003, pp 149–153, Portland, USA.
Foca, G., Salvo, D., Cino, A., Ferrari, C., Lo Fiego, D. P., Minelli, G., & Ulrici, A. (2013). Classification of pig fat samples from different subcutaneous layers by means of fast and non-destructive analytical techniques. Food Research International, 52(1), 185–197.
Fong AY & Wachman E (2008) Advanced photonic tools for hyperspectral imaging for life sciences. SPIE Newsroom: Electronic Imaging & Signal Processing, Available at: https://spie.org/documents/Newsroom/Imported/1051/1051-2008-03-20.pdf . Accessed 29 November 2013.
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29, 131–163.
Geladi, P., MacDougall, D., & Martens, H. (1985). Linearization and scatter-corrections for near-infrared reflectance spectra of meat. Applied Spectroscopy, 39(3), 491–500.
Ghosh, P. K., Jayas, D. S., Gruwel, M. L. H., & White, N. D. G. (2007). A magnetic resonance imaging study of wheat drying kinetics. Biosystems Engineering, 97(2), 189–199.
Givens, D. I., De Boever, J. L., & Deaville, E. R. (1997). The principles, practices and some future applications of near infrared spectroscopy for predicting the nutritive value of foods for animals and humans. Nutrition Research Reviews, 10(1), 83–114.
Goetz, A. F. H. (2009). Three decades of hyperspectral remote sensing of the earth: a personal review. Remote sensing of environment, 113. Supplement, 1, S5–S16.
Goetz, A. F. H., Vane, G., Solomon, J. E., & Rock, B. N. (1985). Imaging spectrometry for earth remote sensing. Science, 228(4704), 1147–1153.
Golic, M., & Walsh, K. B. (2006). Robustness of calibration models based on near infrared spectroscopy for the in-line grading of stonefruit for total soluble solids content. Analytica Chimica Acta, 555(2), 286–291.
Gorretta, N., Roger, J., Aubert, M., Bellon-Maurel, V., Campan, F., & Roumet, P. (2006). Determining vitreousness of durum wheat kernels using near infrared hyperspectral imaging. Journal of Near Infrared Spectroscopy, 14(1), 231–239.
Gou, P., Santos-Garcés, E., Høy, M., Wold, J. P., Liland, K. H., & Fulladosa, E. (2013). Feasibility of NIR interactance hyperspectral imaging for on-line measurement of crude composition in vacuum packed dry-cured ham slices. Meat Science, 95(2), 250–255.
Gowen, A. A., O’Donnell, C. P., Cullen, P. J., Downey, G., & Frias, J. M. (2007). Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends in Food Science and Technology, 18(12), 590–598.
Gowen, A. A., Taghizadeh, M., & O’Donnell, C. P. (2009). Identification of mushrooms subjected to freeze damage using hyperspectral imaging. Journal of Food Engineering, 93(1), 7–12.
Gracia, A., & León, L. (2011). Non-destructive assessment of olive fruit ripening by portable near infrared spectroscopy. Grasas y Aceites, 62(3), 268–274.
Guo, G., Li, S. Z., & Chan, K. L. (2000). Support vector machines for face recognition. Image and Vision Computing, 19(9–10), 631–638.
Hand, D. J. (1997). Construction and assessment of classification rules. New York, USA: John Wiley and Sons.
Hans, B.-P. (2003). Analysis of water in food by near infrared spectroscopy. Food Chemistry, 82(1), 107–115.
Harris, P. J., & Hartley, R. D. (1976). Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy. Nature, 259, 508–510.
Heia, K., Sivertsen, A. H., Stormo, S. K., Elvevoll, E., Wold, J. P., & Nilsen, H. (2007). Detection of nematodes in cod (Gadus morhua) fillets by imaging spectroscopy. Journal of Food Science, 72(1), E011–E015.
Heraud, P., Wood, B. R., Beardall, J., & McNaughton, D. (2006). Effects of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells. Journal of Chemometrics, 20(5), 193–197.
Herault J & Jutten C (1986) Space or time adaptive signal processing by neural network models. In: Proceedings of the American Institute of Physics Conference, Neural Networks for Computing, 13–16 April 1986, Snowbird, USA.
Hottelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Education Psychology, 24(6), 417–441.
Hu, K., & Wang, D. (2011). Unvoiced speech segregation from nonspeech interference via CASA and spectral subtraction. IEEE Transactions on Audio, Speech, and Language Processing, 19(6), 1600–1609.
Huang, M., & Lu, R. (2010). Optimal wavelength selection for hyperspectral scattering prediction of apple firmness and soluble solids content. Transactions of the ASABE, 53(4), 1175–1182.
Huang, M., Zhu, Q., Wang, B., & Lu, R. (2012a). Analysis of hyperspectral scattering images using locally linear embedding algorithm for apple mealiness classification. Computers and Electronics in Agriculture, 89, 175–181.
Huang, Y. B., Thomson, S. J., Molin, W. T., Reddy, K. N., & Yao, H. B. (2012b). Early detection of soybean plant injury from glyphosate by measuring chlorophyll reflectance and fluorescence. Journal of Agricultural Science, 4(5), 117–124.
Iqbal, A., Sun, D.-W., & Allen, P. (2013). Prediction of moisture, color and pH in cooked, pre-sliced Turkey hams by NIR hyperspectral imaging system. Journal of Food Engineering, 117(1), 42–51.
Isaksson, T., & Kowalski, B. (1993). Piece-wise multiplicative scatter correction applied to near-infrared diffuse transmittance data from meat products. Applied Spectroscopy, 47(6), 702–709.
Jennrich RJ (1977) Stepwise discriminant analysis. In: Enslein et al (eds) Statistical Methods for Digital Computers, Wiley and Sons, New York, USA.
Jensen JR (2007) Introductory to digital image processing: a remote sensing perspective. Prentice Hall Series in Geographic Information Science.
Jiang, L., Zhu, B. & Tao, Y. (2010) Hyperspectral image classification methods. In: Sun (ed) Hyperspectral Imaging for Food Quality Analysis and Control (1st edition), pp 79–98, Academic Press is an imprint of Elsevier, London, UK.
Jun, W., Kim, M. S., Cho, B.-K., Millner, P. D., Chao, K., & Chan, D. E. (2010). Microbial biofilm detection on food contact surfaces by macro-scale fluorescence imaging. Journal of Food Engineering, 99(3), 314–332.
Kaliramesh, S., Chelladurai, V., Jayas, D. S., Alagusundaram, K., White, N., & Fields, P. (2013). Detection of infestation by Callosobruchus maculatus in mung bean using near-infrared hyperspectral imaging. Journal of Stored Products Research, 52, 107–111.
Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2011). Application of NIR hyperspectral imaging for discrimination of lamb muscles. Journal of Food Engineering, 104(3), 332–340.
Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2012). Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innovative Food Science and Emerging Technologies, 16, 218–226.
Kamruzzaman, M., Sun, D.-W., ElMasry, G., & Allen, P. (2013). Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta, 103, 130–136.
Karstang, T. V., & Manne, R. (1992). Optimized scaling: a novel approach to linear calibration with closed data sets. Chemometrics and Intelligent Laboratory Systems, 14(1–3), 165–173.
Karunakaran, C., Jayas, D. S., & White, N. D. G. (2003). Soft X-ray inspection of wheat kernels infested by Sitophilus oryzae. Transactions of the ASAE, 46(3), 739–745.
Kavdir, I., Buyukcan, M. B., Lu, R., Kocabiyik, H., & Seker, M. (2009). Prediction of olive quality using FT-NIR spectroscopy in reflectance and transmittance modes. Biosystems Engineering, 103(3), 304–312.
Kellicut, D., Weiswasser, J., Arora, S., Freeman, J., Lew, R., Shuman, C., Mansfield, J. R., & Sidewy, A. N. (2004). Emerging technology: hyperspectral imaging. Perspectives in Vascular Surgery and Endovascular Therapy, 16(1), 53–57.
Kemps, B., Leon, L., Best, S., De Baerdemaeker, J., & Ketelaere, D. (2010). Assessment of the quality parameters in grapes using VIS/NIR spectroscopy. Biosystems Engineering, 105(4), 507–513.
Keulemans, W., Delalieux, S., Aardt, J., & Coppin, P. (2007). Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral analysis: nonparametric statistical approaches and physiological implications. European Journal of Agronomy, 27(1), 130–143.
Kim, I., Kim, M. S., Chen, Y. R., & Kong, S. G. (2004). Detection of skin tumors on chicken carcasses using hyperspectral fluorescence imaging. Transactions of the ASAE, 47(5), 1785–1792.
Kim, M. S., Chen, Y. R., & Mehl, P. M. (2001). Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of the ASAE, 44(3), 721–729.
Kim, M. S., Lefcourt, A. M., Chao, K., Chen, Y. R., Kim, I., & Chan, D. E. (2002). Multispectral detection of fecal contamination on apples based on hyperspectral imagery: part I. Application of visible and near-infrared reflectance imaging. Transactions of the ASAE, 45(6), 2027–2037.
Kim, T., Cho, B.-K., & Kim, M. S. (2010). Emission filter design to detect poultry skin tumors using fluorescence hyperspectral imaging. Revista Colombiana de Ciencias Pecuarias, 23(1), 9–16.
Kiyotoki, S., Nishikawa, J., Okamoto, T., Hamabe, K., Saito, M., Goto, A., Fujita, Y., Hamamoto, Y., Takeuchi, Y., Satori, S., & Sakaida, I. (2013). New method for detection of gastric cancer by hyperspectral imaging: a pilot study. Journal of Biomedical Optics, 18(2), 26010.
Kong SG (2003) Inspection of poultry skin tumor using hyperspectral fluorescence imaging. In Proceedings of the SPIE 6th International Conference on Quality Control by Artificial Vision, Paper No 5132, pp 455–463, 30 April 2003, Gatlinburg, USA.
Kong, S. G., Chen, Y.-R., Kim, I., & Kim, M. S. (2004). Analysis of hyperspectral fluorescence images for poultry skin tumor inspection. Applied Optics, 43(4), 824–833.
Kotsiantis, S. B. (2007). Supervised machine learning: a review of classification techniques. Informatica, 31, 249–268.
Koutchma, T. (2008). UV light for processing foods. IUVA news, 10(4), 24–29.
Kumar, A., Lee, W. S., Ehsani, R., Albrigo, L. G., Yang, C., & Mangan, R. L. (2012). Citrus greening disease detection using aerial hyperspectral and multispectral imaging techniques. Journal of Applied Remote Sensing, 6(1), 063542.
Kuska, M., Wahabzada, M., Leucker, M., Dehne, H.-W., Kersting, K., Oerke, K.-C., Steiner, U., & Mahlein, A.-K. (2015). Hyperspectral phenotyping on the microscopic scale: towards automated characterization of plant-pathogen interactions. Plant Methods, 11, 28.
Lang, M., Stiffel, P., Braunova, Z., & Lichtenthaler, H. K. (1992). Investigation of the blue–green fluorescence emission of plant leaves. Botanica Acta, 105, 395–468.
Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifiers. In Proceedings of the 10th National Conference on artificial intelligence (pp. 223–228). San Jose, USA: AAAI Press.
Lara, M. A., Lleó, L., Diezma-Iglesias, B., Roger, J. M., & Ruiz-Altisent, M. (2013). Monitoring spinach shelf-life with hyperspectral image through packaging films. Journal of Food Engineering, 119(2), 353–361.
Lasch, P. (2012). Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemometrics and Intelligent Laboratory Systems, 117, 100–114.
Lee, K.-J., Kang, S., Kim, M.S., Noh S.H. (2005) Hyperspectal imaging for detecting defect on apples. ASABE conference paper, Paper No. 053075. St. Joseph, MI, USA.
Lefcourt, A. M., Kim, M. S., Chen, Y. R., & Kang, S. (2006). Systematic approach for using hyperspectral imaging data to develop multispectral imaging systems: detection of feces on apples. Computers and Electronics in Agriculture, 54(1), 22–35.
Leiva-Valenzuela, G. A., Lu, R., & Aguilera, J. M. (2012). Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging. Journal of Food Engineering, 115(1), 91–98.
Lelong, C. C. D., Pinet, P. C., & Poilve, H. (1998). Hyperspectral imaging and stress mapping in agriculture: a case study on wheat in Beauce (France). Remote Sensing of Environment, 66(2), 179–191.
Levkov, C., Mihov, G., Ivanov, R., Daskalov, I., Christov, I., & Dotsinsky, I. (2005). Removal of power-line interference from the ECG: a review of the subtraction procedure. Biomedical Engineering Online, 4(50), 1–18.
Lieber, C. A., & Mahadevan-Jansen, A. (2003). Automated method for subtraction of fluorescence from biological Raman spectra. Applied Spectroscopy, 57(11), 1363–1367.
Liu, C., Liu, W., Lu, X., Ma, F., Chen, W., Yang, J., & Zheng, L. (2014). Application of multispectral imaging to determine quality attributes and ripeness stage in strawberry fruit. PloS One, 9(2), e87818.
Liu, L., Ngadi, M. O., Prasher, S. O., & Gariépy, C. (2010). Categorization of pork quality using Gabor filter-based hyperspectral imaging technology. Journal of Food Engineering, 99(3), 284–293.
Liu, Z., Wang, H., & Li, Q. (2012). Tongue tumor detection in medical hyperspectral images. Sensors, 12(1), 162–174.
Lopes, M. B., & Wolff, J. C. (2009). Investigation into classification/sourcing of suspect counterfeit Heptodintrade mark tablets by near infrared chemical imaging. Analytica Chimica Acta, 633(1), 149–155.
Lopes, M. B., Wolff, J. C., Bioucas-Dias, J. M., & Figueiredo, M. A. (2010). Near-infrared hyperspectral unmixing based on a minimum volume criterion for fast and accurate chemometric characterization of counterfeit tablets. Analytical Chemistry, 82(4), 1462–1469.
Lü, Q., & Tang, M. (2012). Detection of hidden bruise on kiwi fruit using hyperspectral imaging and parallelepiped classification. Procedia Environmental Sciences, 12(B), 1172–1179.
Lu, R., & Ariana, D. P. (2013). Detection of fruit fly infestation in pickling cucumbers using a hyperspectral reflectance/transmittance imaging system. Postharvest Biology and Technology, 81, 44–50.
Lu R & Chen YR (1999). Hyperspectral imaging for safety inspection of food and agricultural products. In: Proceedings of the SPIE Conference on Pathogen Detection and Remediation for Safe Eating, Volume 3544, 12 January 1999, pp 121–133, Boston, USA.
Lu, R. (2003). Detection of bruises on apples using near-infrared hyperspectral imaging. Transactions of the ASAE, 46(2), 523–530.
Ma, J., Sun, D.-W., & Pu, H. (2016). Spectral absorption index in hyperspectral image analysis for predicting moisture contents in pork longissimus dorsi muscles. Food Chemistry, 197, 848–854.
Mahalanobis, P. C. (1936). On the generalised distance in statistics. Proceedings of the National Institute of Sciences of India, 2(1), 49–55.
Mahesh S, Jayas DS, Paliwal J & White NDG (2010) Near-infrared (NIR) hyperspectral imaging—an emerging analytical tool for classification of western Canadian wheat classes from different locations and crop years. ASABE conference paper, Paper No. MB-SK 10–302. St. Joseph, MI, USA.
Mahesh, S., Jayas, D. S., Paliwal, J., & White, N. D. G. (2011). Identification of wheat classes at different moisture levels using near-infrared hyperspectral images of bulk samples. Sensing and Instrumentation for Food Quality and Safety, 5(1), 1–9.
Mahesh, S., Manickavasagan, A., Jayas, D. S., Paliwal, J., & White, N. D. G. (2008). Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes. Biosystems Engineering, 101(1), 50–57.
Manley, M., Williams, P., Nilsson, D., & Geladi, P. (2009). Near infrared hyperspectral imaging for the evaluation of endosperm texture in whole yellow maize (Zea maize L.) kernels. Journal of Agricultural and Food Chemistry, 57(19), 8761–8769.
Mark, H., & Workman, J. (2003). Statistics in spectroscopy (2nd edition). San Diego: Academic Press.
Marquez, A. J., AM, D., & MIP, R. (2005). Using optical NIR sensor for on-line virgin olive oils characterization. Sensors and Actuators B, 107(1), 64–68.
Martens, H., & Naes, T. (1992). Multivariate calibration. New York: John Wiley and Sons.
Martens, H., & Stark, E. (1991). Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 9(8), 625–635.
Martens H, Jensen SA & Geladi P (1983) Multivariate linearity transformations for near infrared reflectance spectroscopy. In: Christie (ed) Proceedings of the Nordic Symposium on Applied Statistics, pp 205–234, 12–14 June 1983, Stokkand Forlag Publishers, Stavanger, Norway.
Martens, H., Nielsen, J. P., & Engelsen, S. B. (2003). Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Analytical Chemistry, 75(3), 394–404.
Martinsen, P., Schaare, P., & Andrews, M. (1999). A versatile near infrared imaging spectrometer. Journal of Near Infrared Spectroscopy, 7(1), 17–25.
Massart DL, Vandeginste BGM, Buydens LMC, de Jong S, Lewi PJ & Smeyers-Verbeke J (1997) Handbook of chemometrics and qualimetrics: Part A. Elsevier Science B. V., Amsterdam, The Netherlands.
Mazet, V., Carteret, C., Brie, D., Idier, J., & Humbert, B. (2005). Background removal from spectra by designing and minimising a non-quadratic cost function. Chemometrics and Intelligent Laboratory Systems, 76(2), 121–133.
McGoverin, C. M., Engelbrecht, P., Geladi, P., & Manley, M. (2011). Characterisation of non-viable whole barley, wheat and sorghum grains using near-infrared hyperspectral data and chemometrics. Analytical and Bioanalytical Chemistry, 401(7), 2283–2289.
McLachlan, G. (1992). Discriminant analysis and statistical pattern recognition. Hoboken: John Wiley & Sons, Inc..
Mehl, P. M., Chen, Y.-R., Kim, M. S., & Chan, D. E. (2004). Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. Journal of Food Engineering, 61(1), 67–81.
Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778–1790.
Mendoza, F., Lu, R., Ariana, D., Cen, H., & Bailey, B. (2011). Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 62(2), 149–160.
Mohan, L. A., Karunakaran, C., Jayas, D. S., & White, N. D. G. (2005). Classification of bulk cereals using visible and NIR reflectance characteristics. Canadian Biosystems Engineering, 47, 7.7–7.14.
Nagata M, Tallada JG, Kobayashi T & Toyada H (2005) NIR hyperspectral imaging for measurement of internal quality in strawberries. ASABE conference paper, Paper No. 053131, St. Joseph, MI, USA.
Nagata M, Tallada JG, Kobayashi T, Cui Y & Gejima Y (2004) Predicting maturity quality parameters of strawberries using hyperspectral imaging. ASABE conference paper, Paper No. 043033, St. Joseph, MI, USA.
Neville, R. A., Levesque, J., Staenz, K., Nadeau, C., Hauff, P., & Borstad, G. A. (2003). Spectral unmixing of hyperspectral imagery for mineral exploration: comparison of results from SFSI and AVIRIS. Canadian Journal of Remote Sensing, 29(1), 99–110.
Nguyen NH, Chen J, Richard C, Honeine P & Theys C (2013) Supervised nonlinear unmixing of hyperspectral images using a pre-image methods. In: Mary et al (eds) New Concepts in Imaging: Optical and Statistical Models, EAS Publications Series, 59, 417–437.
Nicolai, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., & Lammertyn, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biology and Technology, 46(2), 99–118.
Nicolai, B. M., Lotze, E., Peirs, A., Scheerlinck, N., & Theron, K. I. (2006). Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biology and Technology, 40(1), 1–6.
Noh HK & Lu R (2005) Hyperspectral reflectance and fluorescence for assessing apple quality. ASABE conference paper, Paper No 053069, St. Joseph, MI, USA.
Noh, H. K., & Lu, R. (2007). Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality. Postharvest Biology and Technology, 43(2), 193–201.
Noh, H. K., Peng, Y., & Lu, R. (2007). Integration of hyperspectral reflectance and fluorescence imaging for assessing apple maturity. Transactions of the ASABE, 50(3), 963–971.
Norris, K. H., & Williams, P. C. (1984). Optimization of mathematical treatments of raw near-infrared signals in the measurement of protein in hard red spring wheat: 1. Influence of particle size. Cereal Chemistry, 61(2), 158–165.
Norris KH (1983) Extraction information from spectrophotometric curves. Predicting chemical composition from visible and near-infrared spectra. In: Martens & Russwurm Jr (eds) Food Research and Data Analysis, pp 95–113, Applied Science, London, UK.
Novales, B., Bertrand, D., Devaux, M. F., Robert, P., & Sire, A. (1999). Multispectral fluorescence imaging for the identification of food products. Journal of the Science of Food and Agriculture, 71(3), 376–382.
O’Farrell, M., Wold, J. P., Hoy, M., Tschudi, J., & Schulerud, H. (2010). On-line fat content classification of in homogeneous pork trimmings using multispectral near infrared interactance imaging. Journal of Near Infrared Spectroscopy, 18(2), 135–146.
Okamoto, H., & Lee, W. S. (2009). Green citrus detection using hyperspectral imaging. Computers and Electronics in Agriculture, 66(2), 201–208.
Osuna E, Freund R & Girosi F (1997) Training support vector machines: an application to face detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 17–19 June 1997, pp 130–136, Puerto Rico, USA.
Ottavian, M., Fasolato, L., Serva, L., Facco, P., & Barolo, M. (2014). Data fusion for food authentication: fresh/frozen-thawed discrimination in west African goatfish (Pseudupeneus prayensis) fillets. Food and Bioprocess Technology, 7(4), 1025–1036.
Otto, O. (1998). Chemometrics: statistics and computer application in analytical chemistry. Wiley-VCH Verlag GmbH and Co. Weinheim: KGaA.
Paliwal, J., Jayas, D. S., Visan, N. S., & White, N. D. G. (2005). Quantification of variations in machine-vision-computed features of cereal grains. Canadian Biosystems Engineering, 47, 7.1–7.6.
Park B & Lu R (2015) Hyperspectral Imaging Technology in Food and Agriculture. Gustavo VB (eds.). Springer, New York, USA.
Park, B., Lawrence, K. C., Windham, W. R., & Buhr, R. J. (2002). Hyperspectral imaging for detecting fecal and ingesta contamination on poultry carcasses. Transactions of the ASAE, 45(6), 2017–2026.
Park, B., Lawrence, K. C., Windham, W. R., & Smith, D. P. (2006). Performance of hyperspectral imaging system for poultry surface fecal contaminant detection. Journal of Food Engineering, 75(3), 340–348.
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2, 559–572.
Pearson, T. C., Wicklow, D. T., Maghirang, E. B., Xie, F., & Dowell, F. E. (2001). Detecting aflatoxin in single corn kernels by using transmittance and reflectance spectroscopy. Transactions of the ASAE, 44(5), 1247–1254.
Pérez-Marín D, Sánchez M-T, Paz P & González-Dugo V (2011) Postharvest shelf-life discrimination of nectarines produced under different irrigation strategies using NIR-spectroscopy. Postharvest shelf-life discrimination of nectarines produced under different irrigation strategies using NIR-spectroscopy, 44(6), 1405–1414.
Pérez-Marín, D., Sánchez, M.-T., Paz, P., Soriano, M.-A., Guerrero, J.-E., & Garrido-Varo, A. (2009). Non-destructive determination of quality parameters in nectarines during on-tree ripening and postharvest storage. Postharvest Biology and Technology, 52(2), 180–188.
Pierna, J. A. F., Baeten, V., & Dardenne, P. (2006). Screening of compound feeds using NIR hyperspectral data. Chemometrics and Intelligent Laboratory Systems, 84(1–2), 114–118.
Pierna, J. A. F., Vermeulen, P., Amand, O., Tossens, A., Dardenne, P., & Baeten, V. (2012). NIR hyperspectral imaging spectroscopy and chemometrics for the detection of undesirable substances in food and feed. Chemometrics and Intelligent Laboratory Systems, 117, 233–239.
Pierna, J. A. F., Volery, P., Besson, R., Baeten, V., & Dardenne, P. (2005). Classification of modified starches by Fourier transform infrared spectroscopy using support vector machines. Journal of Agricultural and Food Chemistry, 53(17), 6581–6585.
Polder, G., Van Der Heijden, G. W. A. M., & Young, I. T. (2003). Tomato sorting using independent component analysis on spectral images. Real-Time Imaging, 9, 253–259.
Polder, G., Van Der Heijden, G. W. A. M., Waalwijk, C., & Young, I. T. (2005). Detection of Fusarium in single wheat kernels using spectral imaging. Seed Science and Technology, 33, 655–668.
Pu, H., Liu, D., Wang, L., & Sun, D.-W. (2016). Soluble solids content and pH prediction and maturity discrimination of lychee fruits using visible and near infrared hyperspectral imaging. Food Analytical Methods, 9(1), 235–244.
Pu, Y.-Y., & Sun, D.-W. (2016). Prediction of moisture content uniformity of microwave-vacuum dried mangoes as affected by different shapes using NIR hyperspectral imaging. Innovative Food Science and Emerging Technologies, 33, 348–356.
Qiao, J., Ngadi, M. O., Wang, N., Gariépy, C., & Prasher, S. O. (2007). Pork quality and marbling level assessment using a hyperspectral imaging system. Journal of Food Engineering, 83(1), 10–16.
Qin, J., & Lu, R. (2005). Detection of pits in tart cherries by hyperspectral transmission imaging. Transactions of the ASABE, 48(5), 1963–1970.
Qin, J., Burks, T. F., Kim, M. S., Chao, K., & Ritenour, M. A. (2008). Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method. Sensing and Instrumentation for Food Quality and Safety, 2(3), 168–177.
Qin, J., Burks, T. F., Ritenour, M. A., & Bonn, W. G. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 93(2), 183–191.
Qu J-H, Sun D-W, Cheng J-H & Pu H (2016) Mapping moisture contents in grass carp (Ctenopharyngodon idella) slices under different freeze drying periods by Vis-NIR hyperspectral imaging. LWT-Food Science and Technology, In Press, Accepted Manuscript. Available online 19 September 2016.
Rajkumar, P., Wang, N., Eimasry, G., Raghavan, G. S. V., & Gariepy, Y. (2012). Studies on banana fruit quality and maturity stages using hyperspectral imaging. Journal of Food Engineering, 108(1), 194–200.
Ramalingam, G., Neethirajan, S., Jayas, D. S., & White, N. D. G. (2011). Characterization of the influence of moisture content on single wheat kernels using machine vision. Applied Engineering in Agriculture, 27(3), 403–409.
Rinnan A, Norgaard L, Van Der Berg FWJ, Thygesen J, Bro R & Engelsen SB (2009) Data pre-processing. In: Sun (ed) Infrared Spectroscopy for Food Quality Analysis and Control, pp 29–50, Academic press, Burlington, USA.
Rodríguez-Pulido, F. J., Barbin, D. F., Sun, D.-W., Gordillo, B., González-Miret, M. L., & Heredia, F. J. (2013). Grape seed characterization by NIR hyperspectral imaging. Postharvest Biology and Technology, 76, 74–82.
Romia MB & MA Bernardez (2009) Multivariate calibration for quantitative analysis. In: Sun (ed) Infrared spectroscopy for food quality analysis and control, pp 51–82, Academic Press, Burlington, USA.
Sapirstein, H. D., Neuman, M., Wright, E. H., Shwedyk, E., & Bushuk, W. (1987). An instrumental system for cereal grain classification using digital image analysis. Journal of Cereal Science, 6(1), 3–14.
Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627–1639.
Schaare, P. N., & Fraser, D. G. (2000). Comparison of reflectance, interactance and transmission modes of visible-near infrared spectroscopy for measuring internal properties of kiwifruit (Actinidia chinensis). Postharvest Biology and Technology, 20(2), 175–184.
Schatzki, T. F., Haff, R. P., Young, R., Can, I., Le, L.-C., & Toyofuku, N. (1997). Defect detection in apples by means of X-ray imaging. Transactions of the ASAE, 40(5), 1407–1415.
Schulze, G., Jirasek, A., Yu, M. M., Lim, A., Turner, R. F., & Blades, M. W. (2005). Investigation of selected baseline removal techniques as candidates for automated implementation. Applied Spectroscopy, 59(5), 545–574.
Schweizer, S. M., & Moura, J. M. F. (2001). Efficient detection in hyperspectral imagery. IEEE Transactions on Image Processing, 10(4), 584–597.
Serranti, S., Cesare, D., Marini, F., & Bonifazi, G. (2013). Classification of oat and groat kernels using NIR hyperspectral imaging. Talanta, 103, 276–284.
Shenderey, C., Shmulevich, I., Alchanatis, V., Egozi, H., Hoffman, A., Ostrovsky, V., Lurie, S., Arie, B., & Schmilovitch, Z. (2010). NIRS detection of moldy core in apples. Food and Bioprocess Technology, 3(1), 79–86.
Singh, C. B., Jayas, D. S., Paliwal, J., & White, N. D. G. (2007). Fungal detection in wheat using near-infrared hyperspectral imaging. Transactions of the ASABE, 50(6), 2171–2176.
Singh, C. B., Jayas, D. S., Paliwal, J., & White, N. D. G. (2009). Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging. Journal of Stored Products Research, 45(3), 151–158.
Singh, C. B., Jayas, D. S., Paliwal, J., & White, N. D. G. (2010). Detection of midge-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging. Biosystems Engineering, 105(3), 380–387.
Singh, C. B., Jayas, D. S., Paliwal, J., & White, N. D. G. (2012). Fungal damage detection in wheat using short-wave near-infrared hyperspectral and digital colour imaging. International Journal of Food Properties, 15(1), 11–24.
Siripatrawan, U., Makino, Y., Kawagoe, Y., & Oshita, S. (2011). Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. Talanta, 85(1), 276–281.
Sivertsen, A. H., Chu, C.-K., Wang, L.-C., Godtliebsen, F., Heia, K., & Nilsen, H. (2009). Ridge detection with application to automatic fish fillet inspection. Journal of Food Engineering, 90(3), 317–324.
Sivertsen, A. H., Heia, K., Hindberg, K., & Godtliebsen, F. (2012). Automatic nematode detection in cod fillets (Gadus morhua L.) by hyperspectral imaging. Journal of Food Engineering, 111(4), 675–681.
Sivertsen, A. H., Heia, K., Stormo, S. K., Elvevoll, E., & Nilsen, H. (2011). Automatic nematode detection in cod fillets (Gadus morhua) by transillumination hyperspectral imaging. Journal of Food Science, 76(1), s77–s83.
Smith, K. L., Steven, M. D., & Colls, J. J. (2004). Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sensing of Environment, 92(2), 207–217.
Soulez F, Bongard S, Thiebaut E & Bacon R (2011) Restoration of hyperspectral astronomical data from integral field spectrograph. In: Proceedings of the 3rd IEEE-GRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing WHISPERS, 6–9 June 2011, pp 1–4, Lisbonne, Portugal.
Steinier, J., Termonia, Y., & Deltour, J. (1972). Comments on smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 44(11), 1906–1909.
Steinmetz, V., Roger, J. M., Molto, E., & Blasco, J. (1999). On-line fusion of colour camera and spectrophotometer for sugar content prediction of apples. Journal of Agricultural Research, 73(2), 207–216.
Stenlund, H., Johansson, E., Gottfries, J., & Trygg, J. (2009). Unlocking interpretation in near infrared multivariate calibrations by orthogonal partial least squares. Analytical Chemistry, 81(1), 203–209.
Stordrange, L., Libnau, F. O., Malthe-Sørenssen, D., & Kvalheim, O. M. (2002). Feasibility study of NIR for surveillance of a pharmaceutical process, including a study of different preprocessing techniques. Journal of Chemometrics, 16(8–10), 529–541.
Su, W.-H., & Sun, D.-W. (2016). Potential of hyperspectral imaging for visual authentication of sliced organic potatoes from potato and sweet potato tubers and rapid grading of the tubers according to moisture proportion. Computers and Electronics in Agriculture, 125, 113–124.
Suzuki, Y., Okamoto, H., & Kataoka, T. (2008c). Image segmentation between crop and weed using hyperspectral imaging for weed detection in soybean field. Environment Control in Biology, 46(3), 163–173.
Suzuki, Y., Okamoto, H., Takahashi, M., Kataoka, T., & Shibata, Y. (2012). Mapping the spatial distribution of botanical composition and herbage mass in pastures using hyperspectral imaging. Japanese Society of Grassland Science, 58(1), 1–7.
Suzuki, Y., Okamoto, H., Tanaka, K., Kato, W., & Kataoka, T. (2008a). Estimation of chemical composition of grass in meadows using hyperspectral imaging. Environment Control in Biology, 46(2), 129–137.
Suzuki, Y., Tanaka, K., Kato, W., Okamoto, H., Kataoka, T., Shimada, H., Sugiura, T., & Shima, E. (2008b). Field mapping of chemical composition of forage using hyperspectral imaging in a grass meadow. Japanese Society of Grassland Science, 54(4), 179–188.
Symons, S. J., & Fulcher, R. G. (1988). Determination of wheat kernel morphological variation by digital image analysis: I. Variation in eastern Canadian milling quality wheats. Journal of Cereal Science, 8(3), 211–218.
Taghizadeh, M., Gowen, A. A., & O’Donnell, C. P. (2011). The potential of visible-near infrared hyperspectral imaging to discriminate between casing soil, enzymatic browning and undamaged tissue on mushroom (Agaricus bisporus) surfaces. Computers and Electronics in Agriculture, 77(1), 74–80.
Tatzer, P., Wolf, M., & Panner, T. (2005). Industrial application for inline material sorting using hyperspectral imaging in the NIR range. Real-Time Imaging, 11(2), 99–107.
Tøgersen, G., Arnesen, J. F., Nilsena, B. N., & Hildruma, K. I. (2003). On-line prediction of chemical composition of semi-frozen ground beef by non-invasive NIR spectroscopy. Meat Science, 63(4), 515–523.
Tøgersen, G., Isaksson, T., Nilsen, B. N., Bakkerb, E. A., & Hildruma, K. I. (1999). On-line NIR analysis of fat, water and protein in industrial scale ground meat batches. Meat Science, 51(1), 97–102.
Tran, C. D. (2005). Principles, instrumentation and applications of infrared multispectral imaging, an overview. Analytical Letters, 38(5), 735–752.
Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16(3), 119–128.
Trygg, J., Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research, 6(2), 469–479.
Tukey, J. W. (1980). We need both exploratory and confirmatory. The American Statistician, 34(1), 23–25.
Vadivambal, R., & Jayas, D. S. (2016). Bio-imaging: principles, techniques and applications. Oxford: CRC Press, Taylor and Francis Group Ltd.
Vadivambal, R., Jayas, D. S., & White, N. D. G. (2007). Wheat disinfestation using microwave energy. Journal of Stored Products Research, 43(4), 508–514.
Vajna, B., Patyi, G., Nagy, Z., Farkas, A., & Marosi, G. (2011). Comparison of chemometric methods in the analysis of pharmaceuticals with hyperspectral Raman imaging. Journal of Raman Spectroscopy, 42(11), 1977–1986.
Van Der Maaten L, Postma E & Van Der Herik J (2009) Dimensionality reduction: a comparative review. Tilburg University Technical Report, TiCC-TR 2009–005.
Vargas AM, Kim MS, Tao Y, Lefcourt A & Chen Y-R (2004) Safety inspection of cantaloupes and strawberries using multispectral fluorescence imaging techniques. ASABE conference paper, Paper No. 043056. St. Joseph, MI, USA.
Vargas, A. M., Kim, M. S., Tao, Y., Lefcourt, A. M., Chen, Y.-R., Luo, Y., Song, Y., & Buchanan, R. (2005). Detection of fecal contamination on cantaloupes using hyperspectral fluorescence imagery. Journal of Food Science, 70(8), e471–e476.
Varshney, P. K., & Arora, M. K. (2004). Advanced image processing techniques for remotely sensed hyperspectral data. Berlin Heidelberg: Springer-Verlag.
Vermeulen, P., Pierna, J. A., Van Egmond, H. P., Dardenne, P., & Baeten, V. (2011). Online detection and quantification of ergot bodies in cereals using infrared hyperspectral imaging. Food additives and contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 29(2), 232–240.
Vigneau, N., Ecarnot, M., Rabatel, G., & Roumet, P. (2011). Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in wheat. Field Crops Research, 122(1), 25–31.
Wang, D., Dowell, F. E., Ram, M. S., & Schapaugh, W. T. (2003). Classification of fungal-damaged soybean seeds using near-infrared spectroscopy. International Journal of Food Properties, 7(1), 75–82.
Wang, H., Li, C., & Wang, M. (2013). Qualitative determination of onion internal quality using hyperspectral imaging with reflectance, interactance, and transmittance modes. Transactions of ASABE, 56(4), 1–14.
Wang, K., Chi, G., Lau, R., & Chen, T. (2011). Multivariate calibration of near infrared spectroscopy in the presence of light scattering effect: a comparative study. Analytical Letters, 44(5), 824–836.
Wang, L., Pu, H., & Sun, D.-W. (2016). Estimation of chlorophyll-a concentration of different seasons in outdoor ponds using hyperspectral imaging. Talanta, 147, 422–429.
Wang, W., & Paliwal, J. (2006). Spectral data compression and analyses techniques to discriminate wheat classes. Transactions of the ASABE, 49(5), 1607–1612.
Wang, W., & Paliwal, J. (2007). Near-infrared spectroscopy and imaging in food quality and safety. Sensing and Instrumentation for Food Quality and Safety, 1(4), 193–207.
Wang, W., Li, C., Tollner, E. W., Gitaitis, R. D., & Rains, G. C. (2012). Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderiacepacia)-infected onions. Journal of Food Engineering, 109(1), 38–48.
Wang W, Paliwal J & Jayas DS (2004). Determination of moisture content of ground wheat using near-infrared spectroscopy. ASABE conference paper, Paper No. MB04–200, St. Joseph, MI, USA.
Williams, P., Geladi, P., Fox, G., & Manley, M. (2009). Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. Analytica Chimica Acta, 653(2), 121–130.
Wold, H. (1975). Soft modeling by latent variables. In Gani (Ed.), Nonlinear iterative partial least squares approach. Perspectives in probability and statistics (pp. 520–540). London: Academic Press.
Wold, J. P. (2016). On-line and non-destructive measurement of core temperature in heat treated fish cakes by NIR hyperspectral imaging. Innovative Food Science and Emerging Technologies, 33, 431–437.
Wold, J. P., O’Farrell, M., Hoy, M., & Tschudi, J. (2011). On-line determination and control of fat content in batches of beef trimmings by NIR imaging spectroscopy. Meat Science, 89(3), 317–324.
Wold, S., Antti, H., Lindgren, F., & Ohman, J. (1998). Orthogonal signal correction of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems, 44(1–2), 175–185.
Wold, S., Martens, H., & Wold, H. (1983). The multivariate calibration problem in chemistry solved by the PLS method. In Ruhe & Kagstrom (eds) proceedings of the conference on matrix pencils. Lecture notes in mathematics, 973 (pp. 286–293). Heidelberg: Springer.
Wu, D., & Sun, D.-W. (2013a). Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review-part I: fundamentals. Innovative Food Science and Emerging Technologies, 19, 1–14.
Wu, D., & Sun, D.-W. (2013b). Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review-part II: applications. Innovative Food Science and Emerging Technologies, 19, 15–28.
Wu, D., Shi, H., Wang, S., He, Y., Bao, Y., & Liu, K. (2012). Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system. Analytica Chimica Acta, 726, 57–66.
Wu, W., Mallet, Y., Walczak, B., Penninckx, W., Massart, D. L., Heuerding, S., & Erni, F. (1996). Comparison of regularized discriminant analysis, linear discriminant analysis and quadratic discriminant analysis, applied to NIR data. Analytica Chimica Acta, 329(3), 257–265.
Xie, A., Sun, D.-W., Zhu, Z., & Pu, H. (2016). Nondestructive measurements of freezing parameters of frozen porcine meat by NIR hyperspectral imaging. Food and Bioprocess Technology, 9(9), 1444–1454.
Xie, C., Shao, Y., Li, X., & Hea, Y. (2015). Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging. Scientific Reports, 5, 16564.
Xing, J., Bravo, C., Jancsok, P. T., Ramon, H., & De Baerdemaeker, J. (2005). Detecting bruises on ‘golden delicious’ apples using hyperspectral imaging with multiple wavebands. Biosystems Engineering, 90(1), 27–36.
Xing, J., Hung, P. V., Symons, S., Shahin, M., & Hatcher, D. (2009). Using a short wavelength infrared (SWIR) hyperspectral imaging system to predict alpha amylase activity in individual Canadian western wheat kernels. Sensing and Instrumentation for Food Quality and Safety, 3(4), 211–218.
Xing, J., Saeys, W., & De Baerdemaeker, J. (2007). Combination of chemometric tools and image processing for bruise detection on apples. Computers and Electronics in Agriculture, 56(1), 1–13.
Xing, J., Symons, S., Hatcher, D., & Shahin, M. (2011). Comparison of short-wavelength infrared (SWIR) hyperspectral imaging system with an FT-NIR spectrophotometer for predicting alpha-amylase activities in individual Canadian western red spring (CWRS) wheat kernels. Biosystems Engineering, 108(4), 303–310.
Xu, J.-L., Riccioli, C., & Sun, D.-W. (2016a). Development of an alternative technique for rapid and accurate determination of fish caloric density based on hyperspectral imaging. Journal of Food Engineering, 190, 185–194.
Xu, J.-L., Riccioli, C., & Sun, D.-W. (2016b). Efficient integration of particle analysis in hyperspectral imaging for rapid assessment of oxidative degradation in salmon fillet. Journal of Food Engineering, 169, 259–271.
Yang, C. (2012). A high-resolution airborne four-camera imaging system for agricultural remote sensing. Computers and Electronics in Agriculture, 88, 13–24.
Zayas, I., Pomeranz, Y., & Lai, F. S. (1985). Discrimination between Arthur and Arkan wheats by image analysis. Cereal Chemistry, 62(6), 478–480.
Zhang, H., Paliwal, J., Jayas, D. S., & White, N. D. G. (2007). Classification of fungal infected wheat kernels using near-infrared reflectance hyperspectral imaging and support vector machine. Transactions of the ASABE, 50(5), 1779–1785.
Zhang, Q., Wang, H., Plemmons, R. J., & Pauca, V. P. (2008). Tensor methods for hyperspectral data analysis: a space object material identification study. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 25(12), 3001–3012.
Zhang, X., Liu, F., He, Y., & Li, X. (2012). Application of hyperspectral imaging and chemometric calibrations for variety discrimination of maize seeds. Sensors, 12(12), 17234–17246.
Zheng, G., Chen, Y., Intes, X., Chance, B., & Glickson, J. D. (2004). Contrast-enhanced near-infrared (NIR) optical imaging for subsurface cancer detection. Journal of Porphyrins and Phthalocyanines, 8(9), 1106–1117.
Zhu, Q. B., Huang, M., Zhao, X., & Wang, S. (2013). Wavelength selection of hyperspectral scattering image using new semi-supervised affinity propagation for prediction of firmness and soluble solid content in apples. Food Analytical Methods, 6(1), 334–342.
Zude, M., Herold, B., Roger, J.-M., Bellon-Maurel, V., & Landahl, S. (2006). Non-destructive tests on the prediction of apple fruit flesh firmness and soluble solids content on tree and in shelf life. Journal of Food Engineering, 77(2), 254–260.
Zupan J & Gesteinger J (1993) Neural networks for chemists: an introduction. Wiley, VCH, Weinheim, Germany.
Zupan, J. (1994). Introduction of artificial neural network (ANN) methods: what they are and how to use them. Acta Chimica Slovenica, 41(3), 327–352.