Extraction of Cholesterol with Methyl-β-Cyclodextrin Perturbs Formation of Clathrin-coated Endocytic Vesicles

Molecular Biology of the Cell - Tập 10 Số 4 - Trang 961-974 - 1999
Siv Kjersti Rodal1, Grethe Skretting1, Øystein Garred1, Frederik Vilhardt2, Bo van Deurs2, Kirsten Sandvig1,2
1Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway; and
2Structural Cell Biology Unit, Department of Medical Anatomy, The Panum Institute, University of Copenhagen, DK-2200, Copenhagen N, Denmark

Tóm tắt

The importance of cholesterol for endocytosis has been investigated in HEp-2 and other cell lines by using methyl-β-cyclodextrin (MβCD) to selectively extract cholesterol from the plasma membrane. MβCD treatment strongly inhibited endocytosis of transferrin and EGF, whereas endocytosis of ricin was less affected. The inhibition of transferrin endocytosis was completely reversible. On removal of MβCD it was restored by continued incubation of the cells even in serum-free medium. The recovery in serum-free medium was inhibited by addition of lovastatin, which prevents cholesterol synthesis, but endocytosis recovered when a water-soluble form of cholesterol was added together with lovastatin. Electron microscopical studies of MβCD-treated HEp-2 cells revealed that typical invaginated caveolae were no longer present. Moreover, the invagination of clathrin-coated pits was strongly inhibited, resulting in accumulation of shallow coated pits. Quantitative immunogold labeling showed that transferrin receptors were concentrated in coated pits to the same degree (approximately sevenfold) after MβCD treatment as in control cells. Our results therefore indicate that although clathrin-independent (and caveolae-independent) endocytosis still operates after removal of cholesterol, cholesterol is essential for the formation of clathrin-coated endocytic vesicles.

Từ khóa


Tài liệu tham khảo

Alberts A.W., 1980, Proc. Natl. Acad. Sci. USA, 77, 3957, 10.1073/pnas.77.7.3957

Brown M.S., 1980, J. Lipid Res., 21, 505, 10.1016/S0022-2275(20)42221-7

Chang J.Y., 1998, Biochem. Biophys. Res. Commun., 249, 817, 10.1006/bbrc.1998.9237

Chang W.J., 1992, J. Cell Biol., 118, 63, 10.1083/jcb.118.1.63

Ciechanover A., 1983, J. Biol. Chem., 258, 9681, 10.1016/S0021-9258(17)44551-0

Creutz C.E., 1992, Science, 258, 924, 10.1126/science.1439804

Criado M., 1982, Biochemistry, 21, 3622, 10.1021/bi00258a015

Damke H., 1995, J. Cell Biol., 131, 69, 10.1083/jcb.131.1.69

Damke H., 1994, J. Cell Biol., 127, 915, 10.1083/jcb.127.4.915

Debry P., 1997, J. Biol. Chem., 272, 1026, 10.1074/jbc.272.2.1026

Deckert M., 1996, J. Cell Biol., 133, 791, 10.1083/jcb.133.4.791

Deirdre P.O., 1998, J. Cell Biol., 141, 101, 10.1083/jcb.141.1.101

Eker P., 1994, J. Biol. Chem., 269, 18607, 10.1016/S0021-9258(17)32353-0

Fraker P.J., 1978, Biochem. Biophys. Res. Commun., 80, 849, 10.1016/0006-291X(78)91322-0

Gruenberg J., 1993, Trends Cell Biol., 3, 224, 10.1016/0962-8924(93)90116-I

Hailstones D., 1998, J. Lipid Res., 39, 369, 10.1016/S0022-2275(20)33898-0

Hansen S.H., 1992, Exp. Cell Res., 199, 19, 10.1016/0014-4827(92)90457-J

10.1091/mbc.8.3.533

Heiniger H.J., 1976, Nature, 263, 515, 10.1038/263515a0

Henley J.R., 1998, J. Cell Biol., 141, 85, 10.1083/jcb.141.1.85

Irie T., 1992, J. Pharmacol. Sci., 81, 521, 10.1002/jps.2600810609

Keller P., 1998, J. Cell Biol., 140, 1357, 10.1083/jcb.140.6.1357

Kilsdonk E.P., 1995, J. Biol. Chem., 270, 17250, 10.1074/jbc.270.29.17250

Klein U., 1995, Biochemistry, 34, 13784, 10.1021/bi00042a009

Lamaze C., 1997, J. Biol. Chem., 272, 20332, 10.1074/jbc.272.33.20332

Lange Y., 1991, J. Lipid Res., 32, 329, 10.1016/S0022-2275(20)42093-0

Larkin J.M., 1983, Cell, 33, 273, 10.1016/0092-8674(83)90356-2

McGookey D.J., 1983, J. Cell Biol., 96, 1273, 10.1083/jcb.96.5.1273

Montesano R., 1979, Proc. Natl. Acad. Sci. USA, 76, 6391, 10.1073/pnas.76.12.6391

Muller C., 1979, Br. J Hematol., 42, 355, 10.1111/j.1365-2141.1979.tb01143.x

Murata M., 1995, Proc. Natl. Acad. Sci. USA, 92, 10339, 10.1073/pnas.92.22.10339

Neufeld E.B., 1996, J. Biol. Chem., 271, 21604, 10.1074/jbc.271.35.21604

Ohtani Y., 1989, Eur. J. Biochem., 186, 17, 10.1111/j.1432-1033.1989.tb15171.x

Oliver C., 1982, J. Cell Biol., 95, 154, 10.1083/jcb.95.1.154

Orlandi P.A., 1998, J. Cell Biol., 141, 905, 10.1083/jcb.141.4.905

Parton R.G., 1996, Curr. Opin. Cell Biol., 8, 542, 10.1016/S0955-0674(96)80033-0

Parton R.G., 1994, J. Cell Biol., 127, 1199, 10.1083/jcb.127.5.1199

Petersen O.W., 1983, J. Cell Biol., 96, 277, 10.1083/jcb.96.1.277

Pitha J., 1988, Life Sci., 43, 493, 10.1016/0024-3205(88)90150-6

Reinhart M.P., 1987, J. Biol. Chem., 262, 9649, 10.1016/S0021-9258(18)47983-5

Rothberg K.G., 1992, Cell, 68, 673, 10.1016/0092-8674(92)90143-Z

Rothberg K.G., 1990, J. Cell Biol., 111, 2931, 10.1083/jcb.111.6.2931

Sandvig K., 1979, Exp. Cell Res., 121, 15, 10.1016/0014-4827(79)90439-7

Sandvig K., 1987, J. Cell Biol., 105, 679, 10.1083/jcb.105.2.679

Sandvig K., 1994, Trends Cell Biol., 4, 275, 10.1016/0962-8924(94)90211-9

Sandvig K., 1996, Am. Physiol. Soc., 76, 949

Schmid S.L., 1997, Annu. Rev. Biochem., 6, 511, 10.1146/annurev.biochem.66.1.511

Schnitzer J.E., 1994, J. Biol. Chem., 269, 6072, 10.1016/S0021-9258(17)37571-3

Schnitzer J.E., 1994, J. Cell Biol., 127, 1217, 10.1083/jcb.127.5.1217

Shinitzky M., 1974, J. Mol. Biol., 85, 603, 10.1016/0022-2836(74)90318-0

Shinitzky M., 1977, Biochemistry, 16, 982, 10.1021/bi00624a027

Smaby J.M., 1996, Biophys. J., 70, 868, 10.1016/S0006-3495(96)79629-7

Subtil A., 1994, J. Cell Sci., 107, 3461, 10.1242/jcs.107.12.3461

van Deurs B., 1989, Int. Rev. Cytol., 117, 131, 10.1016/S0074-7696(08)61336-4

Vogel U., 1998, J. Cell Sci., 111, 825, 10.1242/jcs.111.6.825