Extraction and concentration of nanoplastic particles from aqueous suspensions using functionalized magnetic nanoparticles and a magnetic flow cell

Mark C. Surette1, Denise M. Mitrano2, Kim R. Rogers1
1U.S. EPA Center for Environmental Measurement and Modeling, 109 T.W. Alexander Drive, Research Triangle Park, Durham, NC, 27709, USA
2Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitatstrasse 16, 8092, Zürich, Switzerland

Tóm tắt

AbstractAlthough a considerable knowledge base exists for environmental contamination from nanoscale and colloidal particles, significant knowledge gaps exist regarding the sources, transport, distribution, and effects of microplastic pollution (plastic particles < 5 mm) in the environment. Even less is known regarding nanoplastic pollution (generally considered to be plastic particles < 1 μm). Due to their small size, nanoplastics pose unique challenges and potential risks. We herein report a technique focused on the concentration and measurement of nanoplastics in aqueous systems. Hydrophobically functionalized magnetic nanoparticles (HDTMS-FeNPs) were used as part of a method to separate and concentrate nanoplastics from environmentally relevant matrices, here using metal-doped polystyrene nanoplastics (PAN-Pd@NPs) to enable low-level detection and validation of the separation technique. Using a magnetic separation flow cell, PAN-Pd@NPs were removed from suspensions and captured on regenerated cellulose membranes. Depending on the complexity of solution chemistry, variable extraction rates were possible. PAN-Pd@NPs were recovered from ultrapure water, synthetic freshwater, synthetic freshwater with a model natural organic matter isolate (NOM; Suwannee River Humic Acid), and from synthetic marine water, with recoveries for PAN-Pd@NPs of 84.9%, 78.9%, 70.4%, and 56.1%, respectively. During the initial method testing, it was found that the addition of NaCl was needed in the ultrapure water, synthetic freshwater and synthetic fresh water with NOM to induce particle aggregation and attachment. These results indicate that magnetic nanoparticles in combination with a flow-through system is a promising technique to extract nanoplastics from aqueous suspensions with various compositions.

Từ khóa


Tài liệu tham khảo

Rochman CM. Microplastics research — from sink to source in freshwater systems. Science (80-). 2018;360(6384):28–9.

Murphy F, Ewins C, Carbonnier F, Quinn B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol. 2016;50(11):5800–8. https://doi.org/10.1021/acs.est.5b05416.

Besseling E, Redondo-Hasselerharm P, Foekema EM, Koelmans AA. Quantifying ecological risks of Aquatic Micro- and Nanoplastic. Crit Rev Environ Sci Technol. 2019;49(1):32–80. https://doi.org/10.1080/10643389.2018.1531688.

Koelmans AA, Besseling E, Foekema E, Kooi M, Mintenig S, Ossendorp BC, et al. Risks of plastic debris: unravelling fact, opinion, perception, and belief. Environ Sci Technol. 2017;51(20):11513–9. https://doi.org/10.1021/acs.est.7b02219.

Besseling E, Quik JTK, Sun M, Koelmans AA. Fate of Nano- and microplastic in freshwater systems: a modeling study. Environ Pollut. 2017;220:540–8. https://doi.org/10.1016/J.ENVPOL.2016.10.001.

Koelmans, A. A.; Besseling, E.; Shim, W. J. Nanoplastics in the aquatic environment. Critical review. In Marine anthropogenic litter; Bergmann, M., Gutow, L., Klages, M. Springer International Publishing: Cham; 2015.pp. 325–340. https://doi.org/10.1007/978-3-319-16510-3_12.

Wagner S, Reemtsma T. Things we know and don’t know about nanoplastic in the Eenvironment. Nat Nanotechnol. 2019;14(4):300–1. https://doi.org/10.1038/s41565-019-0424-z.

Mitrano DM, Wick P, Nowack B. Placing Nanoplastics in the context of global plastic pollution. Nat Nanotechnol. 2021;16(5):491–500. https://doi.org/10.1038/s41565-021-00888-2.

Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L, et al. Nanoplastic in the North Atlantic subtropical gyre. Environ Sci Technol. 2017:acs.est.7b03667. https://doi.org/10.1021/acs.est.7b03667.

Gigault J, Pedrono B, Maxit B, Ter Halle A. Marine plastic litter: the unanalyzed Nano-fraction. Environ Sci Nano. 2016;3(2):346–50. https://doi.org/10.1039/C6EN00008H.

Rios Mendoza LM, Karapanagioti H, Álvarez NR. Micro (Nanoplastics) in the marine environment: current knowledge and gaps. Curr Opin Environ Sci Heal. 2018;1:47–51. https://doi.org/10.1016/j.coesh.2017.11.004.

Lambert S, Wagner M. Characterisation of Nanoplastics during the degradation of polystyrene. Chemosphere. 2016;145:265–8. https://doi.org/10.1016/j.chemosphere.2015.11.078.

Song YK, Hong SH, Jang M, Han GM, Jung SW, Shim WJ. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ Sci Technol. 2017;51(8):4368–76. https://doi.org/10.1021/acs.est.6b06155.

Lambert S, Wagner M. Formation of microscopic particles during the degradation of different polymers. Chemosphere. 2016;161:510–7. https://doi.org/10.1016/j.chemosphere.2016.07.042.

Li J, Liu H, Paul Chen J. Microplastics in freshwater systems: a Review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018;137:362–74. https://doi.org/10.1016/j.watres.2017.12.056.

Wagner M, Scherer C, Alvarez-Muñoz D, Brennholt N, Bourrain X, Buchinger S, et al. Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur. 2014;26(1):1–9. https://doi.org/10.1186/s12302-014-0012-7.

da Costa JP, Santos PSM, Duarte AC, Rocha-Santos T. (Nano) plastics in the environment - sources, fates and effects. Sci Total Environ. 2016;566–567:15–26. https://doi.org/10.1016/j.scitotenv.2016.05.041.

Wahl A, Le Juge C, Davranche M, El Hadri H, Grassl B, Reynaud S, et al. Nanoplastic occurrence in a soil amended with plastic debris. Chemosphere. 2021;262. https://doi.org/10.1016/j.chemosphere.2020.127784.

Gillibert R, Balakrishnan G, Deshoules Q, Tardivel M, Magazzù A, Grazia Donato M, et al. Raman tweezers for small microplastics and Nanoplastics identification in seawater. Environ Sci Technol. 2019;53(15):9003–13. https://doi.org/10.1021/acs.est.9b03105.

Materić D, Kasper-Giebl A, Kau D, Anten M, Greilinger M, Ludewig E, et al. Micro-and Nanoplastics in Alpine snow: a new method for chemical identification and (semi) quantification in the Nanogram range. Environ Sci Technol. 2020;54(4):2353–9. https://doi.org/10.1021/acs.est.9b07540.

Xu G, Cheng H, Jones R, Feng Y, Gong K, Li K, et al. Surface-enhanced Raman spectroscopy facilitates the detection of microplastics <1 Μm in the Environment. Environ Sci Technol. 2020;54(24):15594–603. https://doi.org/10.1021/acs.est.0c02317.

Grbic J, Nguyen B, Guo E, You JB, Sinton D, Rochman CM. Magnetic extraction of microplastics from environmental samples. Environ Sci Technol Lett. 2019;6(2):68–72. https://doi.org/10.1021/acs.estlett.8b00671.

Mitrano DM, Beltzung A, Frehland S, Schmiedgruber M, Cingolani A, Schmidt F. Synthesis of metal-doped Nanoplastics and their utility to investigate fate and behavior in complex environmental systems. Nat Nanotechnol. 2019;14(4):362–8. https://doi.org/10.1038/s41565-018-0360-3.

Koelmans AA. Proxies for nanoplastic. Nat Nanotechnol. 2019;14(4):307–8. https://doi.org/10.1038/s41565-019-0416-z.

Hildebrandt L, Mitrano DM, Zimmermann T, Pröfrock D. A Nanoplastic sampling and enrichment approach by continuous flow centrifugation. Front Environ Sci. 2020;8(June):1–13. https://doi.org/10.3389/fenvs.2020.00089.

Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5. https://doi.org/10.1038/nmeth.2089.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. https://doi.org/10.1038/nmeth.2019.

Smoluchowski M, v. Versuch einer mathematischen theorie der koagulationskinetik kollider lösungen. Kolloid Zeitschrift. 1917;21(3):98–104. https://doi.org/10.1007/BF01427232.

Verwey EJW, Overbeek JTG. Theory of the stability of lyophobic colloids. Nature. 1948;162(4113):315–6. https://doi.org/10.1038/162315b0.

O’Melia CR. Aquasols: the behavior of small particles in Aquatic systems. Environ Sci Technol. 1980;14(9):1052–60.

Derjaguin B, Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog Surf Sci. 1993;43(1–4):30–59. https://doi.org/10.1016/0079-6816(93)90013-L.

Weilenmann U, O’Melia CR, Stumm W. Particle transport in lakes: models and measurements. Limnol Oceanogr. 1989;34(1):1–18. https://doi.org/10.4319/lo.1989.34.1.0001.

Buffle J, Leppard GG. Characterization of Aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environ Sci Technol. 1995;29(9):2169–75. https://doi.org/10.1021/es00009a004.

Mosley LM, Hunter KA, Ducker WA. Forces between colloid particles in natural waters. Environ Sci Technol. 2003;37(15):3303–8. https://doi.org/10.1021/es026216d.

Liu J, Legros S, von der Kammer F, Hofmann T. Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles. Environ Sci Technol. 2013;47(9):4113–20. https://doi.org/10.1021/es302447g.

Surette MC, Nason JA. Effects of surface coating character and interactions with natural organic matter on the colloidal stability of gold nanoparticles. Environ Sci Nano. 2016;3(5):1144–52. https://doi.org/10.1039/C6EN00180G.

Hildebrandt L, Mitrano DM, Zimmermann T, Profrock. A Nanoplastic sampling and continuous enrichment approach by continuous flow centrifugation. Frontiers Envirom Sci. 2020:81–13. https://doi.org/10.3389/fenvs.2020.00089.