Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các Vesicle Ngoại Bào của Tế Bào Đệm Trung Mạc Có Thể Được Tiếp Nhận Bởi Tế Bào Vi Mạch và Phần Nào Ngăn Chặn Sự Kích Thích Do β-amyloid Gây Ra
Tóm tắt
Các tế bào đệm trung mạc/tế bào gốc (MSCs) có khả năng điều tiết miễn dịch vượt trội. Các MSCs cung cấp hiệu ứng bảo vệ qua trung gian paracrine, một phần do các vesicle ngoại bào (EVs) tạo ra. Đã có báo cáo rằng các EVs từ MSCs (MSC-EVs) chứa các yếu tố tan được, chẳng hạn như cytokines, chemokines, yếu tố tăng trưởng và thậm chí cả microRNAs, góp phần mang lại cho chúng các hiệu ứng chống viêm và tái tạo tương tự như MSCs. Hơn nữa, MSCs điều chỉnh sự kích hoạt của tế bào vi mạch thông qua cơ chế hành động hai chiều dựa vào cả sự tiếp xúc tế bào và các yếu tố được tiết ra. Các tế bào vi mạch là các tế bào miễn dịch của hệ thần kinh trung ương và là những người trung gian chính trong tình trạng viêm dẫn đến các rối loạn thoái hóa thần kinh. Tại đây, chúng tôi đã điều tra xem MSC-EVs có ảnh hưởng đến sự kích hoạt của tế bào vi mạch do các hợp chất β-amyloid hay không. Chúng tôi cho thấy rằng sự hiện diện của MSC-EVs có thể ngăn chặn sự gia tăng các trung gian gây viêm như yếu tố hoại tử khối u (TNF)-α và nitric oxide (NO). Cả hai đều tăng lên trong các bệnh thoái hóa thần kinh biểu hiện tình trạng viêm mãn tính, như trong bệnh Alzheimer. Chúng tôi chứng minh rằng MSC-EVs được các tế bào vi mạch hấp thụ. Hơn nữa, nghiên cứu của chúng tôi hỗ trợ việc sử dụng MSC-EVs như một công cụ điều trị đầy hứa hẹn để điều trị các bệnh viêm thần kinh.
Từ khóa
#tế bào đệm trung mạc #vesicle ngoại bào #tế bào vi mạch #β-amyloid #bệnh thoái hóa thần kinhTài liệu tham khảo
Boche, D., Perry, V. H., & Nicoll, J. A. R. (2013). Review: activation patterns of microglia and their identification in the human brain. Neuropathology and Applied Neurobiology, 39(1), 3–18. https://doi.org/10.1111/nan.12011
Graeber, M. B., Li, W., & Rodriguez, M. L. (2011). Role of microglia in CNS inflammation. FEBS Letters, 585(23), 3798–3805. https://doi.org/10.1016/j.febslet.2011.08.033
Lee, D. Y., Oh, Y. J., & Jin, B. K. (2005). Thrombin-activated microglia contribute to death of dopaminergic neurons in rat mesencephalic cultures: dual roles of mitogen-activated protein kinase signaling pathways. Glia, 51(2), 98–110. https://doi.org/10.1002/glia.20190
Meyer-Luehmann, M., Spires-Jones, T. L., Prada, C., Garcia-Alloza, M., de Calignon, A., Rozkalne, A., et al. (2008). Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature, 451(7179), 720–724. https://doi.org/10.1038/nature06616
Rojanathammanee, L., Floden, A. M., Manocha, G. D., & Combs, C. K. (2015). Attenuation of microglial activation in a mouse model of Alzheimer’s disease via NFAT inhibition. Journal of Neuroinflammation, 12. https://doi.org/10.1186/s12974-015-0255-2
Gabandé-Rodríguez, E., Keane, L., & Capasso, M. (2020). Microglial phagocytosis in aging and Alzheimer’s disease. Journal of Neuroscience Research, 98(2), 284–298. https://doi.org/10.1002/jnr.24419
Carniglia, L., Ramírez, D., Durand, D., Saba, J., Turati, J., Caruso, C., et al. (2017). Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases. Mediators of Inflammation, 2017, 5048616. https://doi.org/10.1155/2017/5048616
Chang, K. A., Kim, H. J., Joo, Y., Ha, S., & Suh, Y. H. (2014). The therapeutic effects of human adipose-derived stem cells in Alzheimer’s disease mouse models. Neuro-degenerative Diseases, 13(2–3), 99–102. https://doi.org/10.1159/000355261
Liew, L. C., Katsuda, T., Gailhouste, L., Nakagama, H., & Ochiya, T. (2017). Mesenchymal stem cell-derived extracellular vesicles: a glimmer of hope in treating Alzheimer’s disease. International Immunology, 29(1), 11–19. https://doi.org/10.1093/intimm/dxx002
Wang, F., Jia, Y., Liu, J., Zhai, J., Cao, N., Yue, W., et al. (2017). Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer’s disease. Cell Biology International, 41(6), 639–650. https://doi.org/10.1002/cbin.10767
Wang, N., Li, Q., Zhang, L., Lin, H., Hu, J., Li, D., et al. (2012). Mesenchymal stem cells attenuate peritoneal injury through secretion of TSG-6. PLoS One1, 7(8), e43768. https://doi.org/10.1371/journal.pone.0043768
Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7(2), 211–228. https://doi.org/10.1089/107632701300062859
Zuk, P. A., Zhu, M., Ashjian, P., de Ugarte, D. A., Huang, J. I., Mizuno, H., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13(12), 4279–4295. https://doi.org/10.1091/mbc.e02-02-0105
McIntosh, K., Zvonic, S., Garrett, S., Mitchell, J. B., Floyd, Z. E., Hammill, L., et al. (2006). The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells (Dayton, Ohio), 24(5), 1246–1253. https://doi.org/10.1634/stemcells.2005-0235
Niemeyer, P., Kornacker, M., Mehlhorn, A., Seckinger, A., Vohrer, J., Schmal, H., et al. (2007). Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro. Tissue Engineering, 13(1), 111–121. https://doi.org/10.1089/ten.2006.0114
Cui, L., Yin, S., Liu, W., Li, N., Zhang, W., & Cao, Y. (2007). Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Engineering, 13(6), 1185–1195. https://doi.org/10.1089/ten.2006.0315
Kronsteiner, B., Wolbank, S., Peterbauer, A., Hackl, C., Redl, H., van Griensven, M., et al. (2011). Human mesenchymal stem cells from adipose tissue and amnion influence T-cells depending on stimulation method and presence of other immune cells. Stem Cells and Development, 20(12), 2115–2126. https://doi.org/10.1089/scd.2011.0031
Lee, J. M., Jung, J., Lee, H. J., Jeong, S. J., Cho, K. J., Hwang, S. G., et al. (2012). Comparison of immunomodulatory effects of placenta mesenchymal stem cells with bone marrow and adipose mesenchymal stem cells. International Immunopharmacology, 13(2), 219–224. https://doi.org/10.1016/j.intimp.2012.03.024
Puissant, B., Barreau, C., Bourin, P., Clavel, C., Corre, J., Bousquet, C., et al. (2005). Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. British Journal of Haematology, 129(1), 118–129. https://doi.org/10.1111/j.1365-2141.2005.05409.x
Yoo, K. H., Jang, I. K., Lee, M. W., Kim, H. E., Yang, M. S., Eom, Y., et al. (2009). Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cellular Immunology, 259(2), 150–156. https://doi.org/10.1016/j.cellimm.2009.06.010
Ma, T., Gong, K., Ao, Q., Yan, Y., Song, B., Huang, H., et al. (2013). Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer’s disease mice. Cell Transplantation, 22(Suppl 1), S113-26. https://doi.org/10.3727/096368913X672181
Kim, S., Chang, K. A., Kim, J., Park, H. G., Ra, J. C., Kim, H. S., et al. (2012). The preventive and therapeutic effects of intravenous human adipose-derived stem cells in Alzheimer’s disease mice. PLoS One1, 7(9), e45757. https://doi.org/10.1371/journal.pone.0045757
Cocucci, E., & Meldolesi, J. (2015). Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends in Cell Biology, 25(6), 364–372. https://doi.org/10.1016/j.tcb.2015.01.004
Bonventre, J. V., & Yang, L. (2011). Cellular pathophysiology of ischemic acute kidney injury. The Journal of Clinical Investigation, 121(11), 4210–4221. https://doi.org/10.1172/JCI45161
Farzamfar, S., Hasanpour, A., Nazeri, N., Razavi, H., Salehi, M., Shafei, S., et al. (2019). Extracellular micro/nanovesicles rescue kidney from ischemia-reperfusion injury. Journal of Cellular Physiology, 234(8), 12290–12300. https://doi.org/10.1002/jcp.27998
Kordelas, L., Rebmann, V., Ludwig, A. K., Radtke, S., Ruesing, J., Doeppner, T. R., et al. (2014). MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia, 28(4), 970–973. https://doi.org/10.1038/leu.2014.41
Lai, P., Chen, X., Guo, L., Wang, Y., Liu, X., Liu, Y., et al. (2018). A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD. Journal of Hematology & Oncology, 11(1), 135. https://doi.org/10.1186/s13045-018-0680-7
Wang, L., Gu, Z., Zhao, X., Yang, N., Wang, F., Deng, A., et al. (2016). Extracellular vesicles released from human umbilical cord-derived mesenchymal stromal cells prevent life-threatening acute graft-versus-host disease in a mouse model of allogeneic hematopoietic stem cell transplantation. Stem Cells and Development, 25(24), 1874–1883. https://doi.org/10.1089/scd.2016.0107
Jaimes, Y., Naaldijk, Y., Wenk, K., Leovsky, C., & Emmrich, F. (2017). Mesenchymal stem cell-derived microvesicles modulate lipopolysaccharides-induced inflammatory responses to microglia cells. Stem Cells (Dayton, Ohio), 35(3), 812–823. https://doi.org/10.1002/stem.2541
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905
Wuchter, P., Bieback, K., Schrezenmeier, H., Bornhäuser, M., Müller, L. P., Bönig, H., et al. (2015). Standardization of Good Manufacturing Practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy, 17(2), 128–139. https://doi.org/10.1016/j.jcyt.2014.04.002
Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750. https://doi.org/10.1080/20013078.2018.1535750
Kummer, M. P., Hermes, M., Delekarte, A., Hammerschmidt, T., Kumar, S., Terwel, D., et al. (2011). Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron, 71(5), 833–844. https://doi.org/10.1016/j.neuron.2011.07.001
Teplow, D. B. (2006). Preparation of Amyloid β-Protein for Structural and Functional Studies. Amyloid, Prions, and Other Protein Aggregates, Part C (Vol. 413, pp. 20–33). Methods in Enzymology. Elsevier
El Khoury, J. B., Moore, K. J., Means, T. K., Leung, J., Terada, K., Toft, M., et al. (2003). CD36 mediates the innate host response to beta-amyloid. The Journal of Experimental Medicine, 197(12), 1657–1666. https://doi.org/10.1084/jem.20021546
Coraci, I. S., Husemann, J., Berman, J. W., Hulette, C., Dufour, J. H., Campanella, G. K., et al. (2002). CD36, a class B scavenger receptor, is expressed on Microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to β-Amyloid fibrils. The American Journal of Pathology, 160(1), 101–112
Stewart, C. R., Stuart, L. M., Wilkinson, K., van Gils, J. M., Deng, J., Halle, A., et al. (2009). CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nature Immunology, 11(2), 155–161. https://doi.org/10.1038/ni.1836
Cherry, J. D., Olschowka, J. A., & O’Banion, M. K. (2014). Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. Journal of Neuroinflammation, 11, 98. https://doi.org/10.1186/1742-2094-11-98
Zrzavy, T., Machado-Santos, J., Christine, S., Baumgartner, C., Weiner, H. L., Butovsky, O., et al. (2018). Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathology (Zurich, Switzerland), 28(6), 791–805. https://doi.org/10.1111/bpa.12583
Mulcahy, L. A., Pink, R. C., & Carter, D. R. F. (2014). Routes and mechanisms of extracellular vesicle uptake. Journal of Extracellular Vesicles, 3. https://doi.org/10.3402/jev.v3.24641
Turgeman, G. (2015). The therapeutic potential of mesenchymal stem cells in Alzheimer’s disease: converging mechanisms. Neural Regeneration Research, 10(5), 698–699. https://doi.org/10.4103/1673-5374.156953
Henn, A., Lund, S., Hedtjärn, M., Schrattenholz, A., Pörzgen, P., & Leist, M. (2009). The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX, 26(2), 83–94. https://doi.org/10.14573/altex.2009.2.83
Winkel, A., Jaimes, Y., Melzer, C., Dillschneider, P., Hartwig, H., Stiesch, M., et al. (2020). Cell culture media notably influence properties of human mesenchymal stroma/stem-like cells from different tissues. Cytotherapy, 22(11), 653–668. https://doi.org/10.1016/j.jcyt.2020.07.005
Chung, M. T., Zimmermann, A. S., Paik, K. J., Morrison, S. D., Hyun, J. S., Lo, D. D., et al. (2013). Isolation of human adipose-derived stromal cells using laser-assisted liposuction and their therapeutic potential in regenerative medicine. Stem Cells Translational Medicine, 2(10), 808–817. https://doi.org/10.5966/sctm.2012-0183
Duscher, D., Maan, Z. N., Luan, A., Aitzetmüller, M. M., Brett, E. A., Atashroo, D., et al. (2017). Ultrasound-assisted liposuction provides a source for functional adipose-derived stromal cells. Cytotherapy, 19(12), 1491–1500. https://doi.org/10.1016/j.jcyt.2017.07.013
Keselowsky, B. G., Wang, L., Schwartz, Z., Garcia, A. J., & Boyan, B. D. (2007). Integrin alpha(5) controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner. Journal of Biomedical Materials Research. Part A, 80(3), 700–710. https://doi.org/10.1002/jbm.a.30898
Olivares-Navarrete, R., Raz, P., Zhao, G., Chen, J., Wieland, M., Cochran, D. L., et al. (2008). Integrin alpha2beta1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proceedings of the National Academy of Sciences of the United States of America, 105(41), 15767–15772. https://doi.org/10.1073/pnas.0805420105
Walker, D. G., & Lue, L. F. (2005). Investigations with cultured human microglia on pathogenic mechanisms of Alzheimer’s disease and other neurodegenerative diseases. Journal of Neuroscience Research, 81(3), 412–425. https://doi.org/10.1002/jnr.20484
Querfurth, H. W., & LaFerla, F. M. (2010). Alzheimer’s disease. The New England Journal of Medicine, 362(4), 329–344. https://doi.org/10.1056/NEJMra0909142
Brennan, F. M., Maini, R. N., & Feldmann, M. (1995). Cytokine expression in chronic inflammatory disease. British Medical Bulletin, 51(2), 368–384. https://doi.org/10.1093/oxfordjournals.bmb.a072967
Sun, G., Li, G., Li, D., Huang, W., Zhang, R., Zhang, H., et al. (2018). hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Materials Science & Engineering. C, Materials for Biological Applications, 89, 194–204. https://doi.org/10.1016/j.msec.2018.04.006
de Godoy, M. A., Saraiva, L. M., de Carvalho, L. R. P., Vasconcelos-Dos-Santos, A., Beiral, H. J. V., Ramos, A. B., et al. (2018). Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. The Journal of Biological Chemistry, 293(6), 1957–1975. https://doi.org/10.1074/jbc.M117.807180
Zrzavy, T., Hametner, S., Wimmer, I., Butovsky, O., Weiner, H. L., & Lassmann, H. (2017). Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain: a Journal of Neurology, 140(7), 1900–1913. https://doi.org/10.1093/brain/awx113