Extracellular Matrix and Fibroblast Communication Following Myocardial Infarction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Frangogiannis, N. G. (2012). Matricellular proteins in cardiac adaptation and disease. Physiological Reviews, 92(2), 635–688. doi: 10.1152/physrev.00008.2011 .
Lindsey, M. L., & Zamilpa, R. (2012). Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovascular Therapeutics, 30(1), 31–41. doi: 10.1111/j.1755-5922.2010.00207.x .
Ma, Y., Chiao, Y. A., Zhang, J., Manicone, A. M., Jin, Y. F., & Lindsey, M. L. (2012). Matrix metalloproteinase-28 deletion amplifies inflammatory and extracellular matrix responses to cardiac aging. Microscopy and Microanalysis: The Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 18(1), 81–90. doi: 10.1017/S1431927611012220 .
Chiao, Y. A., Zamilpa, R., Lopez, E. F., Dai, Q., Escobar, G. P., Hakala, K., et al. (2010). In vivo matrix metalloproteinase-7 substrates identified in the left ventricle post-myocardial infarction using proteomics. Journal of Proteome Research, 9(5), 2649–2657. doi: 10.1021/pr100147r .
Bowers, S. L., Banerjee, I., & Baudino, T. A. (2010). The extracellular matrix: at the center of it all. Journal of Molecular and Cellular Cardiology, 48(3), 474–482. doi: 10.1016/j.yjmcc.2009.08.024 .
van den Borne, S. W., Diez, J., Blankesteijn, W. M., Verjans, J., Hofstra, L., & Narula, J. (2010). Myocardial remodeling after infarction: the role of myofibroblasts. Nature Reviews Cardiology, 7(1), 30–37. doi: 10.1038/nrcardio.2009.199 .
Lindsey, M. L., Escobar, G. P., Dobrucki, L. W., Goshorn, D. K., Bouges, S., Mingoia, J. T., et al. (2006). Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology, 290(1), H232–239. doi: 10.1152/ajpheart.00457.2005 .
Ma, Y., Lindsey, M. L., & Halade, G. V. (2012). DHA derivatives of fish oil as dietary supplements: a nutrition-based drug discovery approach for therapies to prevent metabolic cardiotoxicity. Expert Opinion on Drug Discovery, 7(8), 711–721. doi: 10.1517/17460441.2012.694862 .
Zamilpa, R., & Lindsey, M. L. (2010). Extracellular matrix turnover and signaling during cardiac remodeling following MI: causes and consequences. Journal of Molecular and Cellular Cardiology, 48(3), 558–563. doi: 10.1016/j.yjmcc.2009.06.012 .
Spinale, F. G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiological Reviews, 87(4), 1285–1342. doi: 10.1152/physrev.00012.2007 .
Sun, Y., & Weber, K. T. (2000). Infarct scar: a dynamic tissue. Cardiovascular Research, 46(2), 250–256.
Hirsch, A. T., Talsness, C. E., Schunkert, H., Paul, M., & Dzau, V. J. (1991). Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circulation Research, 69(2), 475–482.
Porter, K. E., & Turner, N. A. (2009). Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacology & Therapeutics, 123(2), 255–278. doi: 10.1016/j.pharmthera.2009.05.002 .
Ma, Y., Zhang, X., Bao, H., Mi, S., Cai, W., Yan, H., et al. (2012). Toll-like receptor (TLR) 2 and TLR4 differentially regulate doxorubicin induced cardiomyopathy in mice. PLoS One, 7(7), e40763. doi: 10.1371/journal.pone.0040763 .
Daskalopoulos, E. P., Janssen, B. J., & Blankesteijn, W. M. (2012). Myofibroblasts in the infarct area: concepts and challenges. Microscopy and Microanalysis, 18(1), 35–49. doi: 10.1017/S143192761101227X .
Laeremans, H., Hackeng, T. M., van Zandvoort, M. A., Thijssen, V. L., Janssen, B. J., Ottenheijm, H. C., et al. (2011). Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation, 124(15), 1626–1635. doi: 10.1161/CIRCULATIONAHA.110.976969 .
Jourdan-Lesaux, C., Zhang, J., & Lindsey, M. L. (2010). Extracellular matrix roles during cardiac repair. Life Sciences, 87(13–14), 391–400. doi: 10.1016/j.lfs.2010.07.010 .
Medugorac, I. (1982). Characterization of intramuscular collagen in mammalian left ventricle. Basic Research in Cardiology, 77(6), 589–598.
Murakami, M., Kusachi, S., Nakahama, M., Naito, I., Murakami, T., Doi, M., et al. (1998). Expression of the alpha 1 and alpha 2 chains of type IV collagen in the infarct zone of rat myocardial infarction. Journal of Molecular and Cellular Cardiology, 30(6), 1191–1202. doi: 10.1006/jmcc.1998.0684 .
Shamhart, P. E., & Meszaros, J. G. (2010). Non-fibrillar collagens: key mediators of post-infarction cardiac remodeling? Journal of Molecular and Cellular Cardiology, 48(3), 530–537. doi: 10.1016/j.yjmcc.2009.06.017 .
Matsui, Y., Ikesue, M., Danzaki, K., Morimoto, J., Sato, M., Tanaka, S., et al. (2011). Syndecan-4 prevents cardiac rupture and dysfunction after myocardial infarction. Circulation Research, 108(11), 1328–1339. doi: 10.1161/CIRCRESAHA.110.235689 .
Ricard-Blum, S., & Ballut, L. (2011). Matricryptins derived from collagens and proteoglycans. Frontiers in Bioscience, 16, 674–697.
Zamilpa, R., Lopez, E. F., Chiao, Y. A., Dai, Q., Escobar, G. P., Hakala, K., et al. (2010). Proteomic analysis identifies in vivo candidate matrix metalloproteinase-9 substrates in the left ventricle post-myocardial infarction. Proteomics, 10(11), 2214–2223. doi: 10.1002/pmic.200900587 .
Arslan, F., Smeets, M. B., Riem Vis, P. W., Karper, J. C., Quax, P. H., Bongartz, L. G., et al. (2011). Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction. Circulation Research, 108(5), 582–592. doi: 10.1161/CIRCRESAHA.110.224428 .
Gondokaryono, S. P., Ushio, H., Niyonsaba, F., Hara, M., Takenaka, H., Jayawardana, S. T., et al. (2007). The extra domain A of fibronectin stimulates murine mast cells via toll-like receptor 4. Journal of Leukocyte Biology, 82(3), 657–665. doi: 10.1189/jlb.1206730 .
Liao, Y. F., Gotwals, P. J., Koteliansky, V. E., Sheppard, D., & Van De Water, L. (2002). The EIIIA segment of fibronectin is a ligand for integrins alpha 9beta 1 and alpha 4beta 1 providing a novel mechanism for regulating cell adhesion by alternative splicing. Journal of Biological Chemistry, 277(17), 14467–14474. doi: 10.1074/jbc.M201100200 .
Serini, G., Bochaton-Piallat, M. L., Ropraz, P., Geinoz, A., Borsi, L., Zardi, L., et al. (1998). The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. The Journal of Cell Biology, 142(3), 873–881.
Fukuda, T., Yoshida, N., Kataoka, Y., Manabe, R., Mizuno-Horikawa, Y., Sato, M., et al. (2002). Mice lacking the EDB segment of fibronectin develop normally but exhibit reduced cell growth and fibronectin matrix assembly in vitro. Cancer Research, 62(19), 5603–5610.
Aumailley, M., Bruckner-Tuderman, L., Carter, W. G., Deutzmann, R., Edgar, D., Ekblom, P., et al. (2005). A simplified laminin nomenclature. Matrix Biology, 24(5), 326–332. doi: 10.1016/j.matbio.2005.05.006 .
Morishita, N., Kusachi, S., Yamasaki, S., Kondo, J., & Tsuji, T. (1996). Sequential changes in laminin and type IV collagen in the infarct zone—immunohistochemical study in rat myocardial infarction. Japanese Circulation Journal, 60(2), 108–114.
Dinh, W., Bansemir, L., Futh, R., Nickl, W., Stasch, J. P., Coll-Barroso, M., et al. (2009). Increased levels of laminin and collagen type VI may reflect early remodelling in patients with acute myocardial infarction. Acta Cardiologica, 64(3), 329–334.
van Dijk, A., Niessen, H. W., Zandieh Doulabi, B., Visser, F. C., & van Milligen, F. J. (2008). Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell and Tissue Research, 334(3), 457–467. doi: 10.1007/s00441-008-0713-6 .
Bornstein, P. (2009). Matricellular proteins: an overview. Journal of Cell Communication and Signaling, 3(3–4), 163–165. doi: 10.1007/s12079-009-0069-z .
Dobaczewski, M., Gonzalez-Quesada, C., & Frangogiannis, N. G. (2010). The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. Journal of Molecular and Cellular Cardiology, 48(3), 504–511. doi: 10.1016/j.yjmcc.2009.07.015 .
Chen, C. C., & Lau, L. F. (2009). Functions and mechanisms of action of CCN matricellular proteins. The International Journal of Biochemistry & Cell Biology, 41(4), 771–783. doi: 10.1016/j.biocel.2008.07.025 .
Hilfiker-Kleiner, D., Kaminski, K., Kaminska, A., Fuchs, M., Klein, G., Podewski, E., et al. (2004). Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, and neurohumoral activation. Circulation, 109(18), 2227–2233. doi: 10.1161/01.CIR.0000127952.90508.9D .
Lobel, M., Bauer, S., Meisel, C., Eisenreich, A., Kudernatsch, R., Tank, J., Rauch, U., Kuhl, U., Schultheiss, H.P., Volk, H.D., Poller, W., Scheibenbogen, C. (2012). CCN1: a novel inflammation-regulated biphasic immune cell migration modulator. Cellular and Molecular Life Sciences. doi: 10.1007/s00018-012-0981-x .
Juric, V., Chen, C. C., & Lau, L. F. (2009). Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Molecular and Cellular Biology, 29(12), 3266–3279. doi: 10.1128/MCB.00064-09 .
Rother, M., Krohn, S., Kania, G., Vanhoutte, D., Eisenreich, A., Wang, X., et al. (2010). Matricellular signaling molecule CCN1 attenuates experimental autoimmune myocarditis by acting as a novel immune cell migration modulator. Circulation, 122(25), 2688–2698. doi: 10.1161/CIRCULATIONAHA.110.945261 .
Jun, J. I., & Lau, L. F. (2010). The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nature Cell Biology, 12(7), 676–685. doi: 10.1038/ncb2070 .
Ohnishi, H., Oka, T., Kusachi, S., Nakanishi, T., Takeda, K., Nakahama, M., et al. (1998). Increased expression of connective tissue growth factor in the infarct zone of experimentally induced myocardial infarction in rats. Journal of Molecular and Cellular Cardiology, 30(11), 2411–2422. doi: 10.1006/jmcc.1998.0799 .
Holmes, A., Abraham, D. J., Sa, S., Shiwen, X., Black, C. M., & Leask, A. (2001). CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. Journal of Biological Chemistry, 276(14), 10594–10601. doi: 10.1074/jbc.M010149200 .
Ahmed, M. S., Gravning, J., Martinov, V. N., von Lueder, T. G., Edvardsen, T., Czibik, G., et al. (2011). Mechanisms of novel cardioprotective functions of CCN2/CTGF in myocardial ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 300(4), H1291–1302. doi: 10.1152/ajpheart.00604.2010 .
Colston, J. T., de la Rosa, S. D., Koehler, M., Gonzales, K., Mestril, R., Freeman, G. L., et al. (2007). Wnt-induced secreted protein-1 is a prohypertrophic and profibrotic growth factor. American Journal of Physiology - Heart and Circulatory Physiology, 293(3), H1839–1846. doi: 10.1152/ajpheart.00428.2007 .
Yoon, P. O., Lee, M. A., Cha, H., Jeong, M. H., Kim, J., Jang, S. P., et al. (2010). The opposing effects of CCN2 and CCN5 on the development of cardiac hypertrophy and fibrosis. Journal of Molecular and Cellular Cardiology, 49(2), 294–303. doi: 10.1016/j.yjmcc.2010.04.010 .
Denhardt, D. T., Noda, M., O’Regan, A. W., Pavlin, D., & Berman, J. S. (2001). Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. Journal of Clinical Investigation, 107(9), 1055–1061. doi: 10.1172/JCI12980 .
Katagiri, Y. U., Sleeman, J., Fujii, H., Herrlich, P., Hotta, H., Tanaka, K., et al. (1999). CD44 variants but not CD44s cooperate with beta1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Research, 59(1), 219–226.
Trueblood, N. A., Xie, Z., Communal, C., Sam, F., Ngoy, S., Liaw, L., et al. (2001). Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circulation Research, 88(10), 1080–1087.
Okyay, K., Tavil, Y., Sahinarslan, A., Tacoy, G., Turfan, M., Sen, N., et al. (2011). Plasma osteopontin levels in prediction of prognosis in acute myocardial infarction. Acta Cardiologica, 66(2), 197–202.
Dewald, O., Zymek, P., Winkelmann, K., Koerting, A., Ren, G., Abou-Khamis, T., et al. (2005). CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circulation Research, 96(8), 881–889. doi: 10.1161/01.RES.0000163017.13772.3a .
Kusuyama, T., Yoshiyama, M., Omura, T., Nishiya, D., Enomoto, S., Matsumoto, R., et al. (2005). Angiotensin blockade inhibits osteopontin expression in non-infarcted myocardium after myocardial infarction. Journal of Pharmacological Sciences, 98(3), 283–289.
Fujita, N., Fujita, S., Okada, Y., Fujita, K., Kitano, A., Yamanaka, O., et al. (2010). Impaired angiogenic response in the corneas of mice lacking osteopontin. Investigative Ophthalmology and Visual Science, 51(2), 790–794. doi: 10.1167/iovs.09-3420 .
Vetrone, S. A., Montecino-Rodriguez, E., Kudryashova, E., Kramerova, I., Hoffman, E. P., Liu, S. D., et al. (2009). Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. Journal of Clinical Investigation, 119(6), 1583–1594. doi: 10.1172/JCI37662 .
Ashizawa, N., Graf, K., Do, Y. S., Nunohiro, T., Giachelli, C. M., Meehan, W. P., et al. (1996). Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)-induced DNA synthesis and collagen gel contraction. Journal of Clinical Investigation, 98(10), 2218–2227. doi: 10.1172/JCI119031 .
Lenga, Y., Koh, A., Perera, A. S., McCulloch, C. A., Sodek, J., & Zohar, R. (2008). Osteopontin expression is required for myofibroblast differentiation. Circulation Research, 102(3), 319–327. doi: 10.1161/CIRCRESAHA.107.160408 .
Zohar, R., Zhu, B., Liu, P., Sodek, J., & McCulloch, C. A. (2004). Increased cell death in osteopontin-deficient cardiac fibroblasts occurs by a caspase-3-independent pathway. American Journal of Physiology - Heart and Circulatory Physiology, 287(4), H1730–1739. doi: 10.1152/ajpheart.00098.2004 .
Litvin, J., Zhu, S., Norris, R., & Markwald, R. (2005). Periostin family of proteins: therapeutic targets for heart disease. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 287(2), 1205–1212. doi: 10.1002/ar.a.20237 .
Kii, I., & Kudo, A. (2007). Periostin function in the periodontal ligament and the periosteum. Clinical Calcium, 17(2), 202–208. doi: CliCa0702202208 .
Oka, T., Xu, J., Kaiser, R. A., Melendez, J., Hambleton, M., Sargent, M. A., et al. (2007). Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circulation Research, 101(3), 313–321. doi: 10.1161/CIRCRESAHA.107.149047 .
Norris, R. A., Damon, B., Mironov, V., Kasyanov, V., Ramamurthi, A., Moreno-Rodriguez, R., et al. (2007). Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. Journal of Cellular Biochemistry, 101(3), 695–711. doi: 10.1002/jcb.21224 .
Shimazaki, M., Nakamura, K., Kii, I., Kashima, T., Amizuka, N., Li, M., et al. (2008). Periostin is essential for cardiac healing after acute myocardial infarction. The Journal of Experimental Medicine, 205(2), 295–303. doi: 10.1084/jem.20071297 .
Kuhn, B., del Monte, F., Hajjar, R. J., Chang, Y. S., Lebeche, D., Arab, S., et al. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nature Medicine, 13(8), 962–969. doi: 10.1038/nm1619 .
McCurdy, S. M., Dai, Q., Zhang, J., Zamilpa, R., Ramirez, T. A., Dayah, T., et al. (2011). SPARC mediates early extracellular matrix remodeling following myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 301(2), H497–505. doi: 10.1152/ajpheart.01070.2010 .
McCurdy, S., Baicu, C. F., Heymans, S., & Bradshaw, A. D. (2010). Cardiac extracellular matrix remodeling: fibrillar collagens and Secreted Protein Acidic and Rich in Cysteine (SPARC). Journal of Molecular and Cellular Cardiology, 48(3), 544–549. doi: 10.1016/j.yjmcc.2009.06.018 .
Komatsubara, I., Murakami, T., Kusachi, S., Nakamura, K., Hirohata, S., Hayashi, J., et al. (2003). Spatially and temporally different expression of osteonectin and osteopontin in the infarct zone of experimentally induced myocardial infarction in rats. Cardiovascular Pathology, 12(4), 186–194.
Jugdutt, B. I., Palaniyappan, A., Uwiera, R. R., & Idikio, H. (2009). Role of healing-specific-matricellular proteins and matrix metalloproteinases in age-related enhanced early remodeling after reperfused STEMI in dogs. Molecular and Cellular Biochemistry, 322(1–2), 25–36. doi: 10.1007/s11010-008-9936-9 .
Schellings, M. W., Vanhoutte, D., Swinnen, M., Cleutjens, J. P., Debets, J., van Leeuwen, R. E., et al. (2009). Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. The Journal of Experimental Medicine, 206(1), 113–123. doi: 10.1084/jem.20081244 .
Murphy-Ullrich, J. E. (2001). The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? Journal of Clinical Investigation, 107(7), 785–790. doi: 10.1172/JCI12609 .
Sato, I., & Shimada, K. (2001). Quantitative analysis of tenascin in chordae tendineae of human left ventricular papillary muscle with aging. Annals of Anatomy, 183(5), 443–448.
Imanaka-Yoshida, K., Hiroe, M., Nishikawa, T., Ishiyama, S., Shimojo, T., Ohta, Y., et al. (2001). Tenascin-C modulates adhesion of cardiomyocytes to extracellular matrix during tissue remodeling after myocardial infarction. Laboratory Investigation, 81(7), 1015–1024.
Nishioka, T., Onishi, K., Shimojo, N., Nagano, Y., Matsusaka, H., Ikeuchi, M., et al. (2010). Tenascin-C may aggravate left ventricular remodeling and function after myocardial infarction in mice. American Journal of Physiology - Heart and Circulatory Physiology, 298(3), H1072–1078. doi: 10.1152/ajpheart.00255.2009 .
Tamaoki, M., Imanaka-Yoshida, K., Yokoyama, K., Nishioka, T., Inada, H., Hiroe, M., et al. (2005). Tenascin-C regulates recruitment of myofibroblasts during tissue repair after myocardial injury. American Journal of Pathology, 167(1), 71–80. doi: 10.1016/S0002-9440(10)62954-9 .
Sato, A., Aonuma, K., Imanaka-Yoshida, K., Yoshida, T., Isobe, M., Kawase, D., et al. (2006). Serum tenascin-C might be a novel predictor of left ventricular remodeling and prognosis after acute myocardial infarction. Journal of the American College of Cardiology, 47(11), 2319–2325. doi: 10.1016/j.jacc.2006.03.033 .
Carlson, C. B., Lawler, J., & Mosher, D. F. (2008). Structures of thrombospondins. Cellular and Molecular Life Sciences, 65(5), 672–686. doi: 10.1007/s00018-007-7484-1 .
Frangogiannis, N. G., Ren, G., Dewald, O., Zymek, P., Haudek, S., Koerting, A., et al. (2005). Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation, 111(22), 2935–2942. doi: 10.1161/CIRCULATIONAHA.104.510354 .
Jimenez, B., Volpert, O. V., Crawford, S. E., Febbraio, M., Silverstein, R. L., & Bouck, N. (2000). Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nature Medicine, 6(1), 41–48. doi: 10.1038/71517 .
Schroen, B., Heymans, S., Sharma, U., Blankesteijn, W. M., Pokharel, S., Cleutjens, J. P., et al. (2004). Thrombospondin-2 is essential for myocardial matrix integrity: increased expression identifies failure-prone cardiac hypertrophy. Circulation Research, 95(5), 515–522. doi: 10.1161/01.RES.0000141019.20332.3e .
Rysa, J., Leskinen, H., Ilves, M., & Ruskoaho, H. (2005). Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure. Hypertension, 45(5), 927–933. doi: 10.1161/01.HYP.0000161873.27088.4c .
Davis, G. E., Bayless, K. J., Davis, M. J., & Meininger, G. A. (2000). Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. American Journal of Pathology, 156(5), 1489–1498. doi: 10.1016/S0002-9440(10)65020-1 .
Hamano, Y., Zeisberg, M., Sugimoto, H., Lively, J. C., Maeshima, Y., Yang, C., et al. (2003). Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell, 3(6), 589–601.
Lin, H. C., Chang, J. H., Jain, S., Gabison, E. E., Kure, T., Kato, T., et al. (2001). Matrilysin cleavage of corneal collagen type XVIII NC1 domain and generation of a 28-kDa fragment. Investigative Ophthalmology and Visual Science, 42(11), 2517–2524.
Chang, J. H., Javier, J. A., Chang, G. Y., Oliveira, H. B., & Azar, D. T. (2005). Functional characterization of neostatins, the MMP-derived, enzymatic cleavage products of type XVIII collagen. FEBS Letters, 579(17), 3601–3606. doi: 10.1016/j.febslet.2005.05.043 .
Wahl, M. L., Kenan, D. J., Gonzalez-Gronow, M., & Pizzo, S. V. (2005). Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated. Journal of Cellular Biochemistry, 96(2), 242–261. doi: 10.1002/jcb.20480 .
Kalluri, R., Cantley, L. G., Kerjaschki, D., & Neilson, E. G. (2000). Reactive oxygen species expose cryptic epitopes associated with autoimmune goodpasture syndrome. Journal of Biological Chemistry, 275(26), 20027–20032. doi: 10.1074/jbc.M904549199 .
Nyberg, P., Xie, L., & Kalluri, R. (2005). Endogenous inhibitors of angiogenesis. Cancer Research, 65(10), 3967–3979. doi: 10.1158/0008-5472.CAN-04-2427 .
Mundel, T. M., & Kalluri, R. (2007). Type IV collagen-derived angiogenesis inhibitors. Microvascular Research, 74(2–3), 85–89. doi: 10.1016/j.mvr.2007.05.005 .
Hangai, M., Kitaya, N., Xu, J., Chan, C. K., Kim, J. J., Werb, Z., et al. (2002). Matrix metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis. American Journal of Pathology, 161(4), 1429–1437. doi: 10.1016/S0002-9440(10)64418-5 .
Stern, R., Asari, A. A., & Sugahara, K. N. (2006). Hyaluronan fragments: an information-rich system. European Journal of Cell Biology, 85(8), 699–715. doi: 10.1016/j.ejcb.2006.05.009 .
Chang, C., & Werb, Z. (2001). The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends in Cell Biology, 11(11), S37–43.
Adair-Kirk, T. L., & Senior, R. M. (2008). Fragments of extracellular matrix as mediators of inflammation. The International Journal of Biochemistry & Cell Biology, 40(6–7), 1101–1110. doi: 10.1016/j.biocel.2007.12.005 .