Extension of isometries between the unit spheres of p-normed spaces
Tóm tắt
In this paper, the extension of isometries is considered for some operators between the unit spheres of two real p-normed spaces (
$$0
Tài liệu tham khảo
Albiac, F.: Nonlinear structure of some classical quasi-Banach spaces and F-spaces. J. Math. Anal. Appl. 340, 1312–1325 (2008)
Bayoumi, A.: Foundations of Complex Analysis in Non Locally Convex Spaces–Function Theory Without Convexity Conditions. Mathematics Studied, vol. 193, North Holland, Amsterdam (2003)
Ding, G.-G.: On isometric extension problem between two unit spheres. Sci. China Ser. A 52, 2069–2083 (2009)
Ding, G.-G.: On the linearly isometric extension problem (in Chinese). Sci. Sin. Math. 45, 1–8 (2015)
Ding, G.-G., Li, J.-Z.: Isometric extension problem between strictly convex two-dimensional normed spaces. Acta Math. Sin. (Engl. Ser.) 35, 513–518 (2019)
Fang, X.-N., Wang, J.-H.: On linear extension of isometries between the unit spheres. Acta Math. Sin. (Chin. Ser.) 48, 1109–1112 (2005)
Gal, S.G., Goldstein, J.A.: Semigroups of linear operators on p-Fréchet spaces, \(0<p<1\). Acta Math. Hungar. 114, 13–36 (2007)
Kadets, V., Martín, M.: Extension of isometries between unit spheres of finite-dimensional polyhedral Banach spaces. J. Math. Anal. Appl. 396, 441–447 (2012)
Kalton, N.J., Peck, N.T., Roberts, J.W.: An F-Space Sampler. London Mathematical Society Lecture Notes Series, vol. 89. Cambridge University Press, Cambridge (1984)
Leung, C.-W., Ng, C.-K., Wong, N.-C.: On a variant of Tingley’s problem for some function spaces. J. Math. Anal. Appl. 496(124800), 1–16 (2021)
Li, L., Ren, W.-Y.: Isometries on the quasi-Banach spaces \(L_p~(0<p<1)\). Acta Math. Sin. (Engl. Ser.) 26, 1519–1524 (2010)
Ma, Y.-M.: Isometries of the unit spheres. Acta. Math. Sci. (Ser. B) 12, 366–373 (1992)
Ma, Y.-M.: The Vogt theorem in G-n-normed spaces. Acta Math. Sin. (Chin. Ser.) 63, 329–334 (2020)
Rolewicz, S.: Metric Linear Spaces. PWN-Polich Scientific Publishers, Warszawa (1985)
Tan, D.-N.: Nonexpansive mapping and expansive mappings on the unit spheres of some F-spaces. Bull. Aust. Math. Soc. 82, 22–30 (2010)
Tan, D.-N.: On extension of isometries on the unit spheres of \(L^p\)-spaces for \(0<p\le 1\). Nonlinear Anal. 74, 6981–6987 (2011)
Tan, D.-N.: Phase-isometries on the unit sphere of \(C(K)\). Ann. Funct. Anal. 12, 1–14 (2021)
Tingley, D.: Isometries of the unit sphere. Geom. Dedic. 22, 371–378 (1987)
Vogt, A.: Maps which preserve equality of distance. Stud. Math. 45, 43–48 (1973)
Wang, J.: On extension of isometries between unit spheres of \(AL_p\)-spaces (\(0<p<\infty \)). Proc. Am. Math. Soc. 132, 2899–2909 (2004)
Xiao, J.-Z., Lu, Y.: Some fixed point theorems for \(s\)-convex subsets in \(p\)-normed spaces based on measures of noncompactness. J. Fixed Point Theory Appl. 20, 1–22 (2018)
Yang, X.-Z., Hou, Z.-B., Fu, X.-H.: On linear extension of isometries between the unit spheres of \(\beta \)-normed spaces. Acta Math. Sin. (Chin. Ser.) 48, 1199–1202 (2005)