Extension of isometries between the unit spheres of p-normed spaces

Springer Science and Business Media LLC - Tập 13 - Trang 1-10 - 2022
Jian-Zhong Xiao1, Ying Lu1
1School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, People’s Republic of China

Tóm tắt

In this paper, the extension of isometries is considered for some operators between the unit spheres of two real p-normed spaces ( $$0

Tài liệu tham khảo

Albiac, F.: Nonlinear structure of some classical quasi-Banach spaces and F-spaces. J. Math. Anal. Appl. 340, 1312–1325 (2008) Bayoumi, A.: Foundations of Complex Analysis in Non Locally Convex Spaces–Function Theory Without Convexity Conditions. Mathematics Studied, vol. 193, North Holland, Amsterdam (2003) Ding, G.-G.: On isometric extension problem between two unit spheres. Sci. China Ser. A 52, 2069–2083 (2009) Ding, G.-G.: On the linearly isometric extension problem (in Chinese). Sci. Sin. Math. 45, 1–8 (2015) Ding, G.-G., Li, J.-Z.: Isometric extension problem between strictly convex two-dimensional normed spaces. Acta Math. Sin. (Engl. Ser.) 35, 513–518 (2019) Fang, X.-N., Wang, J.-H.: On linear extension of isometries between the unit spheres. Acta Math. Sin. (Chin. Ser.) 48, 1109–1112 (2005) Gal, S.G., Goldstein, J.A.: Semigroups of linear operators on p-Fréchet spaces, \(0<p<1\). Acta Math. Hungar. 114, 13–36 (2007) Kadets, V., Martín, M.: Extension of isometries between unit spheres of finite-dimensional polyhedral Banach spaces. J. Math. Anal. Appl. 396, 441–447 (2012) Kalton, N.J., Peck, N.T., Roberts, J.W.: An F-Space Sampler. London Mathematical Society Lecture Notes Series, vol. 89. Cambridge University Press, Cambridge (1984) Leung, C.-W., Ng, C.-K., Wong, N.-C.: On a variant of Tingley’s problem for some function spaces. J. Math. Anal. Appl. 496(124800), 1–16 (2021) Li, L., Ren, W.-Y.: Isometries on the quasi-Banach spaces \(L_p~(0<p<1)\). Acta Math. Sin. (Engl. Ser.) 26, 1519–1524 (2010) Ma, Y.-M.: Isometries of the unit spheres. Acta. Math. Sci. (Ser. B) 12, 366–373 (1992) Ma, Y.-M.: The Vogt theorem in G-n-normed spaces. Acta Math. Sin. (Chin. Ser.) 63, 329–334 (2020) Rolewicz, S.: Metric Linear Spaces. PWN-Polich Scientific Publishers, Warszawa (1985) Tan, D.-N.: Nonexpansive mapping and expansive mappings on the unit spheres of some F-spaces. Bull. Aust. Math. Soc. 82, 22–30 (2010) Tan, D.-N.: On extension of isometries on the unit spheres of \(L^p\)-spaces for \(0<p\le 1\). Nonlinear Anal. 74, 6981–6987 (2011) Tan, D.-N.: Phase-isometries on the unit sphere of \(C(K)\). Ann. Funct. Anal. 12, 1–14 (2021) Tingley, D.: Isometries of the unit sphere. Geom. Dedic. 22, 371–378 (1987) Vogt, A.: Maps which preserve equality of distance. Stud. Math. 45, 43–48 (1973) Wang, J.: On extension of isometries between unit spheres of \(AL_p\)-spaces (\(0<p<\infty \)). Proc. Am. Math. Soc. 132, 2899–2909 (2004) Xiao, J.-Z., Lu, Y.: Some fixed point theorems for \(s\)-convex subsets in \(p\)-normed spaces based on measures of noncompactness. J. Fixed Point Theory Appl. 20, 1–22 (2018) Yang, X.-Z., Hou, Z.-B., Fu, X.-H.: On linear extension of isometries between the unit spheres of \(\beta \)-normed spaces. Acta Math. Sin. (Chin. Ser.) 48, 1199–1202 (2005)