Extension of PERMANOVA to Testing the Mediation Effect of the Microbiome
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bai, 2019, Composition of gut microbiota and its association with body mass index and lifestyle factors in a cohort of 7–18 years old children from the American Gut Project, Pediatr. Obes., 14, e12480, 10.1111/ijpo.12480
Routy, 2018, Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors, Science, 359, 91, 10.1126/science.aan3706
McDonald, 2018, American Gut: An open platform for citizen science microbiome research, Msystems, 3, e00031-18, 10.1128/mSystems.00031-18
Hu, 2020, Testing hypotheses about the microbiome using the linear decomposition model (LDM), Bioinformatics, 36, 4106, 10.1093/bioinformatics/btaa260
Zhu, 2021, Constraining PERMANOVA and LDM to within-set comparisons by projection improves the efficiency of analyses of matched sets of microbiome data, Microbiome, 9, 1, 10.1186/s40168-021-01034-9
Legendre, 1999, Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments, Ecol. Monogr., 69, 1, 10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2
McArdle, 2001, Fitting multivariate models to community data: A comment on distance-based redundancy analysis, Ecology, 82, 290, 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2
Zhao, 2015, Testing in microbiome-profiling studies with MiRKAT, the microbiome regression-based kernel association test, Am. J. Hum. Genet., 96, 797, 10.1016/j.ajhg.2015.04.003
Alekseyenko, 2016, Multivariate Welch t-test on distances, Bioinformatics, 32, 3552, 10.1093/bioinformatics/btw524
Zhang, 2017, A multivariate distance-based analytic framework for microbial interdependence association test in longitudinal study, Genet. Epidemiol., 41, 769, 10.1002/gepi.22065
Jaccard, 1912, The distribution of the flora in the alpine zone, New Phytol., 11, 37, 10.1111/j.1469-8137.1912.tb05611.x
Bray, 1957, An ordination of the upland forest communities of southern Wisconsin, Ecol. Monogr., 27, 326, 10.2307/1942268
Lozupone, 2005, UniFrac: A new phylogenetic method for comparing microbial communities, Appl. Environ. Microbiol., 71, 8228, 10.1128/AEM.71.12.8228-8235.2005
Chen, 2012, Associating microbiome composition with environmental covariates using generalized UniFrac distances, Bioinformatics, 28, 2106, 10.1093/bioinformatics/bts342
Zhang, 2018, A distance-based approach for testing the mediation effect of the human microbiome, Bioinformatics, 34, 1875, 10.1093/bioinformatics/bty014
Hamidi, B., Wallace, K., and Alekseyenko, A.V. (2019). MODIMA, a method for multivariate omnibus distance mediation analysis, allows for integration of multivariate exposure-mediator-response relationships. Genes, 10.
Rizzo, 2007, Measuring and testing dependence by correlation of distances, Ann. Stat., 35, 2769
Rizzo, 2009, Brownian distance covariance, Ann. Appl. Stat., 3, 1236
Rizzo, 2014, Partial distance correlation with methods for dissimilarities, Ann. Stat., 42, 2382
Hu, Y., Satten, G.A., and Hu, Y.J. (2022). Testing microbiome associations with censored survival outcomes at both the community and individual taxon levels. bioRxiv.
Tang, 2016, PERMANOVA-S: Association test for microbial community composition that accommodates confounders and multiple distances, Bioinformatics, 32, 2618, 10.1093/bioinformatics/btw311
Hu, Y.J., and Satten, G.A. (2021). A rarefaction-without-resampling extension of PERMANOVA for testing presence-absence associations in the microbiome. bioRxiv.
Baron, 1986, The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations, J. Personal. Soc. Psychol., 51, 1173, 10.1037/0022-3514.51.6.1173
VanderWeele, 2009, Conceptual issues concerning mediation, interventions and composition, Stat. Its Interface, 2, 457, 10.4310/SII.2009.v2.n4.a7
O’Reilly, P.F., Hoggart, C.J., Pomyen, Y., Calboli, F.C., Elliott, P., Jarvelin, M.R., and Coin, L.J. (2012). MultiPhen: Joint model of multiple phenotypes can increase discovery in GWAS. PLoS ONE, 7.
Wu, 2015, Statistical methods for association tests of multiple continuous traits in genome-wide association studies, Ann. Hum. Genet., 79, 282, 10.1111/ahg.12110
Majumdar, 2015, Semiparametric allelic tests for mapping multiple phenotypes: Binomial regression and Mahalanobis distance, Genet. Epidemiol., 39, 635, 10.1002/gepi.21930
Gower, 1966, Some distance properties of latent root and vector methods used in multivariate analysis, Biometrika, 53, 325, 10.1093/biomet/53.3-4.325
Freedman, 1983, A nonstochastic interpretation of reported significance levels, J. Bus. Econ. Stat., 1, 292, 10.1080/07350015.1983.10509354
Charlson, E.S., Chen, J., Custers-Allen, R., Bittinger, K., Li, H., Sinha, R., Hwang, J., Bushman, F.D., and Collman, R.G. (2010). Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS ONE, 5.
Spencer, 2021, Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response, Science, 374, 1632, 10.1126/science.aaz7015
Matson, 2018, The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients, Science, 359, 104, 10.1126/science.aao3290
Maier, 2018, Extensive impact of non-antibiotic drugs on human gut bacteria, Nature, 555, 623, 10.1038/nature25979
Cao, Q., Sun, X., Rajesh, K., Chalasani, N., Gelow, K., Katz, B., Shah, V.H., Sanyal, A.J., and Smirnova, E. (2021). Effects of rare microbiome taxa filtering on statistical analysis. Front. Microbiol.