Extended Holonomy and Topological Invariance of Vanishing Holonomy Group

Springer Science and Business Media LLC - Tập 14 - Trang 299-358 - 2008
L. Ortiz-Bobadilla1, E. Rosales-González1, S. M. Voronin2
1Instituto de Matemáticas, Universidad Nacional Autónoma de México Area de la investigación científica, México City, México
2Departament of Mathematics, Chelyabinsk State University, Chelyabinsk, Russia

Tóm tắt

In this work, we introduce the notion of extended holonomy and discuss some of its properties. As an application of it, we consider vanishing projective holonomy groups of germs of vector fields with zero (n − 1)-jet and prove, under some genericity assumptions, that the corresponding vanishing holonomy groups are topologically conjugated for orbitally topologically equivalent germs of vector fields.

Tài liệu tham khảo

D. Cerveau and R. Moussu, Groupes d’automorphismes de (C, 0) et équations différentielles ydy + ⋯ = 0. Bull. Soc. Math. France 116 (1988), No. 4, 459–488.

H. Dulac, Recherches des cycles limites. C. R. Acad. Sci. Paris 204 (1937), 1703–1706.

F. Loray, Rigidité topologique pour des singularités de feuilletages holomorphes. In: Ecuaciones Diferenciales y Singularidades. Colloque Medina 1995 (J. Mozo-Fernandez, ed.). Universidad de Valladolid (1997), pp. 213–234.

R. Moussu, Holonomie évenecente des équations différentielles dégénerées transverses. North-Holland Math Stud. 103, North Holland, Amsterdam (1985), 161–173.

L. Ortiz-Bobadilla, E. Rosales-Gonzalez, and S. M. Voronin, “Topological invariance of the vanishing holonomy group and extended holonomy group. Preliminares del Instituto de Matematicas de la Universidad Nacional Autónoma de México 802 (2005).

S. M. Voronin, Invariants for singular points of holomorphic vector fields on the complex plane. In: The Stokes phenomenon and Hilbert’s 16th problem. Groningen, 1995, World Sci. Publishing, River Edge, NJ (1996), pp. 305–323.

H. Żoł̧adek, The monodromy group. Monogr. Mat. Instytut Matematyczny PAN (N.S.) 67, Birkhäuser, Basel (2006).