Expression of genes involved in immune regulation in chronic myeloid leukemia
Tóm tắt
Từ khóa
#Bạch cầu tủy mạn #klotho #CTLA4 #IκB-α #PD1 #LAG3 và STATTài liệu tham khảo
Arzt L, Kothmaier H, Halbwedl I, Quehenberger F, & Popper HH. (2014) Signal transducer and activator of transcription 1 (STAT1) acts like an oncogene in malignant pleural mesothelioma. Virchows Archiv : an international journal of pathology 465: 79-88.
Buchbinder EI, & Desai A. (2016) CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. American journal of clinical oncology 39: 98-106.
Chen BJ, Dashnamoorthy R, Galera P, et al. (2019a) The immune checkpoint molecules PD-1, PD-L1, TIM-3 and LAG-3 in diffuse large B-cell lymphoma. Oncotarget 10: 2030-2040.
Chen N, Feng L, Lu K, et al. (2019b) STAT6 phosphorylation upregulates microRNA-155 expression and subsequently enhances the pathogenesis of chronic lymphocytic leukemia. Oncology letters 18: 95-100.
Christiansson L, Soderlund S, Svensson E, et al. (2013) Increased level of myeloid-derived suppressor cells, programmed death receptor ligand 1/programmed death receptor 1, and soluble CD25 in Sokal high risk chronic myeloid leukemia. PloS one 8: e55818.
Cochet O, Frelin C, Peyron JF, & Imbert V. (2006) Constitutive activation of STAT proteins in the HDLM-2 and L540 Hodgkin lymphoma-derived cell lines supports cell survival. Cell Signal 18: 449-455.
Hantschel O, Warsch W, Eckelhart E, et al. (2012) BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. Nature chemical biology 8: 285-293.
He Y, Rivard CJ, Rozeboom L, et al. (2016) Lymphocyte-activation gene-3, an important immune checkpoint in cancer. Cancer science 107: 1193-1197.
Hehlmann R, Hochhaus A, Baccarani M, & European L. (2007) Chronic myeloid leukaemia. Lancet 370: 342-350.
Keir ME, Butte MJ, Freeman GJ, & Sharpe AH. (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26: 677-704.
Leibrock CB, Voelkl J, Kuro OM, Lang F, & Lang UE. (2016) 1,25(OH)2D3 dependent overt hyperactivity phenotype in klotho-hypomorphic mice. Sci Rep 6: 24879.
Lorenzi O, Veyrat-Durebex C, Wollheim CB, et al. (2010) Evidence against a direct role of klotho in insulin resistance. Pflugers Arch 459: 465-473.
Meissl K, Macho-Maschler S, Muller M, & Strobl B. (2017) The good and the bad faces of STAT1 in solid tumours. Cytokine 89: 12-20.
Morotti A, Crivellaro S, Panuzzo C, et al. (2017) IkappaB-alpha: At the crossroad between oncogenic and tumor-suppressive signals. Oncology letters 13: 531-534.
Nair RR, Tolentino JH, & Hazlehurst LA. (2012) Role of STAT3 in Transformation and Drug Resistance in CML. Frontiers in oncology 2: 30.
Okazaki T, Okazaki IM, Wang J, et al. (2011) PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. The Journal of experimental medicine 208: 395-407.
Rubinek T, Shulman M, Israeli S, et al. (2012) Epigenetic silencing of the tumor suppressor klotho in human breast cancer. Breast cancer research and treatment 133: 649-657.
Saurabh K, Ghalaut VS, Bala J. Chronic myeloid leukemia and ferritin levels. Biomed Biotechnol Res J 2017;1:120-3.
Sayed D, Badrawy H, Gaber N, & Khalaf MR. (2014) p-Stat3 and bcr/abl gene expression in chronic myeloid leukemia and their relation to imatinib therapy. Leuk Res 38: 243-250.
Scheeren FA, Diehl SA, Smit LA, et al. (2008) IL-21 is expressed in Hodgkin lymphoma and activates STAT5: evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood 111: 4706-4715.
Schmidt S, & Wolf D. (2009) Role of gene-expression profiling in chronic myeloid leukemia. Expert Rev Hematol 2: 93-103.
Shapiro M, Herishanu Y, Katz BZ, et al. (2017) Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Haematologica 102: 874-882.
Sharma P, & Allison JP. (2015) The future of immune checkpoint therapy. Science 348: 56-61.
Song TL, Nairismagi ML, Laurensia Y, et al. (2018) Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood 132: 1146-1158.
Wolf I, Levanon-Cohen S, Bose S, et al. (2008) Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene 27: 7094-7105.
Xuan NT, & Hai NV. (2018) Changes in expression of klotho affect physiological processes, diseases, and cancer. Iranian journal of basic medical sciences 21: 3-8.
Yang H, Bueso-Ramos C, DiNardo C, et al. (2014) Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28: 1280-1288.