Exponential Gain and Saturation of a Self-Amplified Spontaneous Emission Free-Electron Laser

American Association for the Advancement of Science (AAAS) - Tập 292 Số 5524 - Trang 2037-2041 - 2001
S.V. Milton1, E. Gluskin1, N. Arnold1, C. Benson1, William J. Berg1, Sandra Biedron1,2, M. Borland1, Yong-Chul Chae1, R. Dejus1, P.K. Den Hartog1, B. Deriy1, M. Erdmann1, Y. Eidelman1, M. W. Hahne1, Zhirong Huang1, K.-J. Kim1, John Lewellen1, Yuelin Li1, A.H. Lumpkin1, О. А. Макаров1, E. R. Moog1, A. Nassiri1, V. Sajaev1, R. Soliday1, Brian Tieman1, E. M. Trakhtenberg1, G. Travish1, I.B. Vasserman1, Н.А. Винокуров3, Xijie Wang4,5, G. Wiemerslage1, B. X. Yang1
1Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 USA
2MAX-Laboratory, University of Lund, 221 00 Lund, Sweden
3Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russian Federation
4Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
5the Structural Biology Program, Mount Sinai School of Medicine, Room 16-20, 1425 Madison Avenue, New York, NY 10029, USA.

Tóm tắt

Self-amplified spontaneous emission in a free-electron laser has been proposed for the generation of very high brightness coherent x-rays. This process involves passing a high-energy, high-charge, short-pulse, low-energy-spread, and low-emittance electron beam through the periodic magnetic field of a long series of high-quality undulator magnets. The radiation produced grows exponentially in intensity until it reaches a saturation point. We report on the demonstration of self-amplified spontaneous emission gain, exponential growth, and saturation at visible (530 nanometers) and ultraviolet (385 nanometers) wavelengths. Good agreement between theory and simulation indicates that scaling to much shorter wavelengths may be possible. These results confirm the physics behind the self-amplified spontaneous emission process and forward the development of an operational x-ray free-electron laser.

Từ khóa


Tài liệu tham khảo

J. L. Laclare in Proceedings of the IEEE 1993 Particle Accelerator Conference S. T. Coneliassen Ed. (IEEE Piscataway NJ 1993) pp. 1427–1431.

J. N. Galayda in Proceedings of the IEEE 1995 Particle Accelerator Conference L. Gennari Ed. (IEEE Piscataway NJ 1995) pp. 4–8.

H. Kamitsubo in Proceedings of the IEEE 1997 Particle Accelerator Conference M. Comyn M. K. Craddock M. Reiser J. Thomson Eds. (IEEE Piscataway NJ 1997) pp. 6–10.

A. M. Kondratenko E. L. Saldin Sov. Phys. Dokl. 24 (no. 12) 986 (1979).

10.1016/0030-4018(84)90105-6

C. Pellegrini “A 4 to 0.1 nm FEL Based on the SLAC Linac” (Workshop of Fourth Generation Light Sources Stanford Synchrotron Radiation Laboratory Stanford CA 1992).

M. Cornacchia et al. “Linac Coherent Light Source (LCLS) Design Study Report ” Report SLAC-R-521 (Stanford Linear Accelerator Center Stanford CA revised 1998).

R. Brinkmann G. Materlik J. Rossbach A. Wagner Eds. “Conceptual Design of a 500 GeV e + e − Linear Collider with Integrated X-Ray Laser Facility ” DESY Report DESY97-048 (Deutsches Elektronen-Synchrotron Hamburg 1997).

10.1063/1.858927

F. Sakai et al. “Development of High-Duty Operation RF Photoinjector ” Report BNL-65003 (Brookhaven National Laboratory Upton NY 1997).

S. G. Biedron et al. in Proceedings of the IEEE 1999 Particle Accelerator Conference A. Luccio W. Mackay Eds (IEEE Piscataway NJ 1999) pp. 2024–2026.

10.1103/PhysRevLett.81.4867

10.1103/PhysRevE.57.6093

10.1103/PhysRevLett.85.988

10.1103/PhysRevLett.85.3825

10.1016/S0168-9002(97)01398-3

10.1117/12.352655

I. B. Vasserman et al. in Proceedings of the 1999 Particle Accelerator Conference A. Luccio W. Mackay Eds. (IEEE Piscataway NJ 1999) pp. 2489–2491.

10.1063/1.1291817

10.1016/S0168-9002(99)00087-X

N. D. Arnold et al. in Proceedings of the Twenty Second Free-Electron Laser Conference V. Litvinenko Y. Wu Eds. [ Nucl. Instrum. Methods Phys. Rev. Sect. A (2000)].

G. Travish et al. in Proceedings of the 20th International Linac Conference A. Chao Ed. SLAC-R-561 (CD available from Stanford Linear Accelerator Center Stanford CA 2000).

M. Borland J. Lewellen S. Milton in Proceedings of the 20th International Linac Conference A. Chao Ed. SLAC-R-561 (CD available from Stanford Linear Accelerator Center Stanford CA 2000).

10.1103/PhysRevLett.64.3011

10.1103/PhysRevA.46.6662

10.1016/S0168-9002(00)00114-5

___ in Proceedings of the IEEE 1995 Particle Accelerator Conference L. Gennari Ed. (IEEE Piscataway NJ 1995) pp. 183–185.

10.1016/0168-9002(93)90072-P

W. Fawley “An Informal Manual for GINGER and Its Post-processor XPLOTGIN ” BP Tech Note-104 (Lawrence Berkeley National Laboratory Berkeley CA 1995).

This work would not have been possible without the outstanding help and dedication of the Advanced Photon Source (APS) technicians the supporting engineers and scientists and the management and administrative staff of the APS. In addition we thank W. Fawley for his help with the simulation code GINGER P. Emma for many insights into the design of the bunch compressor system and the people of the Argonne Wakefield Accelerator for the occasional testing of laser and rf equipment. This work is supported by the U.S. Department of Energy Office of Basic Energy Sciences under contract W-31-109-ENG-38.