Exploring the Transient Behavior of Z–R Relationships: Implications for Radar Rainfall Estimation

Journal of Applied Meteorology and Climatology - Tập 48 Số 10 - Trang 2127-2143 - 2009
O. P. Prat1, Ana P. Barros1
1Civil and Environmental Engineering Department, Pratt School of Engineering, Duke University, Durham, North Carolina

Tóm tắt

Abstract The objective of this study is to characterize the signature of dynamical microphysical processes on reflectivity–rainfall (Z–R) relationships used for radar rainfall estimation. For this purpose, a bin model with explicit microphysics was used to perform a sensitivity analysis of the shape parameters of the drop size distribution (DSD) as a function of time and rainfall regime. Simulations show that coalescence is the dominant microphysical process for low to moderate rain intensity regimes (R < 20 mm h−1) and that the rain rate in this regime is strongly dependent on the spectral properties of the DSD (i.e., the shape). The time to equilibrium for light rainfall is at least twice as long as in the case of heavy rainfall (1 h for stratiform vis-à-vis 30 min for thunderstorms). For high-intensity rainfall (R > 20 mm h−1), collision–breakup dynamics dominate the evolution of the raindrop spectra. The time-dependent Z–R relationships produced by the model converge to a universal Z–R relationship for heavy intensity rainfall (A = 1257; b ∼ 1) centered on the region of Z–R space defined by the ensemble of over 100 empirical Z–R relationships. Given the intrinsically transient nature of the DSD for light rainfall, it is proposed that the vertical raindrop spectra and corresponding rain rates should be modeled explicitly by a microphysical model. A demonstration using a multicolumn simulation of a Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) overpass over Darwin for a stratiform event during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE) is presented.

Từ khóa


Tài liệu tham khảo

Amitai, 2000, Systematic variation of observed radar reflectivity–rainfall rate relations in the tropics., J. Appl. Meteor., 39, 2198, 10.1175/1520-0450(2001)040<2198:SVOORR>2.0.CO;2

Atlas, 1964, Advances in radar meteorology., 10.1016/S0065-2687(08)60009-6

Atlas, 1957, Physical–synoptic variations of raindrop size parameters.

Atlas, 1973, Doppler radar characteristics of precipitation at vertical incidence., Rev. Geophys., 11, 1, 10.1029/RG011i001p00001

Atlas, 1999, Systematic variation of drop size and radar–rainfall relations., J. Geophys. Res., 104, 6155, 10.1029/1998JD200098

Barros, 1993, Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas., Mon. Wea. Rev., 121, 1195, 10.1175/1520-0493(1993)121<1195:DMOTSD>2.0.CO;2

Barros, 2008, Revisiting Low and List (1982): Evaluation of raindrop collision parameterizations using laboratory observations and modeling., J. Atmos. Sci., 65, 2983, 10.1175/2008JAS2630.1

Battan, 1973, Radar Observation of the Atmosphere.

Best, 1950, Empirical formulae for the terminal velocity of water drops falling thought the atmosphere., Quart. J. Roy. Meteor. Soc., 76, 302, 10.1002/qj.49707632905

Blanchard, 1953, Raindrop size-distribution in Hawaiian rains., J. Meteor., 10, 457, 10.1175/1520-0469(1953)010<0457:RSDIHR>2.0.CO;2

Bringi, 2004, Evolution of a new polarimetrically based Z–R relation., J. Atmos. Oceanic Technol., 21, 612, 10.1175/1520-0426(2004)021<0612:EOANPB>2.0.CO;2

Campos, 2000, Instrumental uncertainties in Z–R relations., J. Appl. Meteor., 39, 1088, 10.1175/1520-0450(2000)039<1088:IUIZRR>2.0.CO;2

Carbone, 1978, The evolution of raindrop spectra in warm-based convective storms as observed and numerically modeled., J. Atmos. Sci., 35, 2302, 10.1175/1520-0469(1978)035<2302:TEORSI>2.0.CO;2

Ciach, 1999, Radar–rain gauge comparisons under observational uncertainties., J. Appl. Meteor., 38, 1519, 10.1175/1520-0450(1999)038<1519:RRGCUO>2.0.CO;2

Fujiwara, 1965, Raindrop size distribution from individual storms., J. Atmos. Sci., 22, 585, 10.1175/1520-0469(1965)022<0585:RSDFIS>2.0.CO;2

Gorgucci, 2006, Rainfall estimation from X-band dual polarization radar using reflectivity and differential reflectivity., Atmos. Res., 82, 164, 10.1016/j.atmosres.2005.09.008

Guzel, 2001, Using acoustic emission testing to monitor kinetic energy of raindrop and raindrop and raindrop splash erosion.

Iguchi, 2000, Rain-profiling algorithm for the TRMM precipitation radar., J. Appl. Meteor., 39, 2038, 10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2

Illingworth, 2002, The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations., J. Appl. Meteor., 41, 286, 10.1175/1520-0450(2002)041<0286:TNTRRS>2.0.CO;2

Jameson, 2001, Reconsideration of the physical and empirical origins of Z–R relations in radar meteorology., Quart. J. Roy. Meteor. Soc., 127, 517

Jameson, 2001, What is a raindrop size distribution?, Bull. Amer. Meteor. Soc., 82, 1169, 10.1175/1520-0477(2001)082<1169:WIARSD>2.3.CO;2

Jones, 1956, Rainfall drop-size distribution and radar reflectivity.

Lang, 2002, An investigation of the onsets of the 1999 and 2000 monsoons in central Nepal., Mon. Wea. Rev., 130, 1299, 10.1175/1520-0493(2002)130<1299:AIOTOO>2.0.CO;2

List, 1988, A linear radar reflectivity–rain rate relationship for steady tropical rain., J. Atmos. Sci., 45, 3564, 10.1175/1520-0469(1988)045<3564:ALRRRF>2.0.CO;2

Marshall, 1948, The distribution of raindrops with size., J. Meteor., 5, 165, 10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2

Marshall, 1947, Measurement of rainfall by radar., J. Meteor., 4, 186, 10.1175/1520-0469(1947)004<0186:MORBR>2.0.CO;2

McFarquhar, 2004, The effect of raindrop clustering on collision-induced break-up of raindrops., Quart. J. Roy. Meteor. Soc., 130, 2169, 10.1256/qj.03.98

McFarquhar, 1991, The raindrop mean free path and collision rate dependence on rain rate for three-peak equilibrium and Marshall–Palmer distributions., J. Atmos. Sci., 48, 1999, 10.1175/1520-0469(1991)048<1999:TRMFPA>2.0.CO;2

Meneghini, 2000, Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar., J. Appl. Meteor., 39, 2053, 10.1175/1520-0450(2001)040<2053:UOTSRT>2.0.CO;2

Prat, 2007, A robust numerical solution of the stochastic collection–breakup equation for warm rain., J. Appl. Meteor. Climatol., 46, 1480, 10.1175/JAM2544.1

Prat, 2007, Exploring the use of a column model for the characterization of microphysical processes in warm rain: Results from a homogeneous rainshaft model., Adv. Geosci., 10, 145, 10.5194/adgeo-10-145-2007

Prat, 2008, An intercomparison of model simulations and VPR estimates of the vertical structure of warm stratiform rainfall during TWP-ICE., J. Appl. Meteor. Climatol., 47, 2797, 10.1175/2008JAMC1801.1

Raghavan, 2003, Radar Meteorology., 10.1007/978-94-017-0201-0

Robertson, 2003, Effects of uncertainty in TRMM precipitation radar path integrated attenuation on interannual variations of tropical oceanic rainfall., Geophys. Res. Lett., 30, 1180, 10.1029/2002GL016416

Smith, 1993, A study of sampling-variability effects in raindrop size observations., J. Appl. Meteor., 32, 1259, 10.1175/1520-0450(1993)032<1259:ASOSVE>2.0.CO;2

Steiner, 2000, Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra., J. Appl. Meteor., 39, 1923, 10.1175/1520-0450(2000)039<1923:RRRAKE>2.0.CO;2

Steiner, 2004, Scale dependence of radar–rainfall rates—An assessment based on raindrop spectra., J. Hydrometeor., 5, 1171, 10.1175/JHM-383.1

Steiner, 2004, A microphysical interpretation of radar reflectivity–rain rate relationships., J. Atmos. Sci., 61, 1114, 10.1175/1520-0469(2004)061<1114:AMIORR>2.0.CO;2

Stout, 1968, Survey of relationships between rainfall rate and radar reflectivity in the measurement of precipitation., J. Appl. Meteor., 7, 465, 10.1175/1520-0450(1968)007<0465:SORBRR>2.0.CO;2

Testud, 2001, The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing., J. Appl. Meteor., 40, 1118, 10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2

Tokay, 1996, Evidence from tropical raindrop spectra of the origin of rain from stratiform and convective clouds., J. Appl. Meteor., 35, 355, 10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2

Tokay, 2001, Comparison of drop size distribution measurements by impact and optical disdrometers., J. Appl. Meteor., 40, 2083, 10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2

Uijlenhoet, 2001, Raindrop size distributions and radar reflectivity–rain rate relationships for radar hydrology., Hydrol. Earth Syst. Sci., 5, 615, 10.5194/hess-5-615-2001

Uijlenhoet, 2003, The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra., J. Atmos. Sci., 60, 1220, 10.1175/1520-0469(2003)60<1220:TMSOEP>2.0.CO;2

Ulbrich, 1983, Natural variations in the analytical form of the raindrop size distribution., J. Climate Appl. Meteor., 22, 1764, 10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2

Willis, 1984, Functional fits to some observed drop size distributions and parameterization of rain., J. Atmos. Sci., 41, 1648, 10.1175/1520-0469(1984)041<1648:FFTSOD>2.0.CO;2

Wilson, 1979, Radar measurement of rainfall—A summary., Bull. Amer. Meteor. Soc., 60, 1048, 10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2