Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khám Phá Trải Nghiệm Tư Duy Tính Toán Của Học Sinh Trung Học Được Tăng Cường Bằng Các Hoạt Động Lập Trình Dựa Trên Khối: Một Nghiên Cứu Hành Động
Tóm tắt
Tầm quan trọng của việc phát triển kỹ năng tư duy tính toán (CT) đã tạo ra nhiều thực hành và nghiên cứu. Có một lượng đáng kể nghiên cứu trong tài liệu về CT và các kỹ năng liên quan của nó, tuy nhiên, sự khan hiếm các nghiên cứu tập trung vào cả đánh giá định lượng và định tính về kỹ năng CT của học sinh trong các môi trường trường học thực tế là điều đáng chú ý. Nghiên cứu hành động này tập trung vào tác động của các hoạt động lập trình dựa trên khối được sử dụng để cải thiện kỹ năng CT của học sinh lớp 5 và lớp 6 trong một khoảng thời gian 14 tuần. Cả dữ liệu định lượng và định tính đều được thu thập trong suốt quá trình nghiên cứu. Bài kiểm tra Tư duy Tính toán (CTT) được tiến hành trước và sau, nhật ký của giáo viên, và quan sát học sinh đã được thu thập cho nghiên cứu này. Kết quả định lượng cho thấy rằng các quá trình học tập được làm phong phú bằng lập trình dựa trên khối đã ảnh hưởng đáng kể đến điểm số CT của học sinh, trong khi kết quả định tính cho thấy rằng các hoạt động lập trình dựa trên khối không chỉ tăng cường động lực của học sinh đối với bài học mà còn tăng cường sự tham gia tích cực của họ trong những bài học này. Đã xác định rằng phần lớn các hoạt động thách thức xuất phát từ nhu cầu về các kỹ năng khác (kỹ năng toán học) hơn là từ các kỹ năng liên quan đến lập trình.
Từ khóa
#tư duy tính toán #lập trình dựa trên khối #học sinh trung học #nghiên cứu hành động #kỹ năng học tậpTài liệu tham khảo
Alsop, Y. (2019). Assessing computational thinking process using a multiple evaluation approach. International Journal of Child-Computer Interaction, 19, 30–55. https://doi.org/10.1016/j.ijcci.2018.10.004
Angeli, C., & Valanides, N. (2020). Developing young children’s computational thinking with educational robotics: an interaction effect between gender and scaffolding strategy. Computers in Human Behavior, 105, 1055954. https://doi.org/10.1016/j.chb.2019.03.018
Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From scratch to “real”programming. ACM Transactions on Computing Education, 14(4), 1–15. https://doi.org/10.1145/2677087
Atman-Uslu, N. (2022). How do computational thinking self-efficacy and performance differ according to secondary school students’ profiles? The role of computational identity, academic resilience, and gender. Education and Information Technologies. https://doi.org/10.1007/s10639-022-11425-6
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is involved and what is the role of the computer science education community? ACM Inroads, 2, 48–54.
Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing computational thinking in compulsory education – Implications for policy and practice; EUR 28295 EN; https://doi.org/10.2791/792158
Brackmann, C. P., Moreno-León, J., Román-González, M., Casali, A., Robles, G., & Barone, D. (2017). Development of computational thinking skills through unplugged activities in primary school. In Proceedings of the 12th Workshop on Primary and Secondary Computing Education (WiPSCE ‘17) (65–72). Association for Computing Machinery. https://doi.org/10.1145/3137065.3137069
Bubica, N., & Boljat, I. (2022). Assessment of computational thinking – A Croatian evidence-centered design model, Informatics in Education 21(2), 425–463. https://doi.org/10.15388/infedu.2022.17
Cetin, A. (2016). Preservice teachers’ introduction to computing: exploring utilization of scratch. Journal of Educational Computing Research, 54(7), 997–1021.
Chan, S. W., Looi, C. K., & Sumintono, B. (2021). Assessing computational thinking abilities among Singapore secondary students: a rasch model measurement analysis. Journal of Computers in Education, 8, 213–236. https://doi.org/10.1007/s40692-020-00177-2
Cuny, J., Snyder, L., & Wing, J. M. (2010). Demystifying computational thinking for non-computer scientists. Unpublished manuscript. http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf. Accessed 10.05.2022
Cutumisu, M., Adams, C., & Lu, C. A. (2019). Scoping review of empirical research on recent computational thinking assessments. Journal of Science Education and Technology, 28, 651–676. https://doi.org/10.1007/s10956-019-09799-3
Durak-Yildiz, H., & Saritepeci, M. (2018). Analysis of the relation between computational thinking skills and various variables with the structural equation model. Computers & Education, 116, 191–202. https://doi.org/10.1016/j.compedu.2017.09.004
Fields, D. A., Kafai, Y. B., & Giang, M. T. (2017). Youth computational participation in the wild: Understanding experience and equity in participating and programming in the online scratch community. ACM Transactions on Computing Education (TOCE), 17(3), 1–22.
Garneli, V., & Chorianopoulos, K. (2017). Programming video games and simulations in science education: exploring computational thinking through code analysis. Interactive Learning Environments, 26, 386–401. https://doi.org/10.1080/10494820.2017.1337036
George, D., & Mallery, M. (2010). SPSS for Windows step by step: A simple guide and reference, 17.0 update (10a ed.). Pearson.
Gökçe, S., & Aydoğan-Yenmez, A. (2022). Ingenuity of scratch programming on reflective thinking towards problem solving and computational thinking. Education and Information Technologies. https://doi.org/10.1007/s10639-022-11385-x
Grover, S., & Pea, R. (2013). Computational thinking in K-12: a review of the state of the field. Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051
Guggemos, J. (2021). On the predictors of computational thinking and its growth at the high- school level. Computers & Education, 161. https://doi.org/10.1016/j.compedu.2020.104060
Guggemos, J., Seufert, S., & Román-González, M. (2019, November 7–9). Measuring computational thinking – adapting a performance test and a self-assessment instrument for German-speaking countries. In International Association for Development of the Information Society, Paper presented at the International Association for Development of the Information Society (IADIS) International Conference on Cognition and Exploratory Learning in the Digital Age (CELDA). https://doi.org/10.33965/celda2019_201911L023
Gulbahar, Y., Kert, S. B., & Kalelioglu, F. (2019). The self-efficacy perception scale for computational thinking skill: validity and reliability study. Turkish Journal of Computer and Mathematics Education, 10(1), 1–29. https://doi.org/10.16949/turkbilmat.385097
Hair, J. F. Jr., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th Edition). Pearson Education.
Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and how to teach computational thinking: suggestions based on a review of the literature. Computers & Education, 126, 296–310. https://doi.org/10.1016/j.compedu.2018.07.004
Hsu, H. M. J. (2014, February). Gender differences in Scratch Game design In Proceeding of international conference on information, business and education technology (ICIBET) (pp. 100–103). Atlantis Press. https://doi.org/10.2991/icibet-14.2014.28
Kafai, Y. B., & Burke, Q. (2013, March 6–9). The social turn in K-12 programming: Moving from computational thinking to computational participation. In Proceeding of 44th ACM Technical Symposium on Computer Science Education. https://doi.org/10.1145/2445196.2445373
Kafai, Y. B., & Proctor, C. (2022). A revaluation of computational thinking in K–12 education: moving toward computational literacies. Educational Researcher, 51(2), 146–151. https://doi.org/10.3102/0013189X211057904
Kalelioğlu, F., Gülbahar, Y., & Kukul, V. (2016). A framework for computational thinking based on a systematic research review. Baltic Journal of Modern Computing, 4(3), 583–596.
Kalelioglu, F. (2015). A new way of teaching programming skills to K-12 students: Code.org. Computers in Human Behavior, 52, 200-210. https://doi.org/10.1016/j.chb.2015.05.047
Kong, S. C., & Lai, M. (2022). Validating a computational thinking concepts test for primary education using item response theory: an analysis of students’ responses. Computers & Education, 187, 104562.
Kong, S. C., Liu, M. M., & Lai, M. (2018). A study of primary school students’ interest, collaboration attitude, and programming empowerment in computational thinking education. Computers & Education, 127, 178–189. https://doi.org/10.1016/j.compedu.2018.08.026
Kong, S. C. (2016). A framework of curriculum design for computational thinking development in K-12 education. Journal of Computers in Education, 3, 377–394. https://doi.org/10.1007/s40692-016-0076-z
Korkmaz, O., Cakir, R., & Ozden, Y. (2017). A validity and reliability study of the computational thinking scales (CTS). Computers in Human Behavior, 72, 558–569. https://doi.org/10.1016/j.chb.2017.01.005
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32–37. https://doi.org/10.1145/1929887.1929902
Lee, I., Grover, S., Martin, F., Pillai, S., & Malyn-Smith, J. (2020). Computational thinking from a disciplinary perspective: integrating computational thinking in K-12 science, technology, engineering, and mathematics education. Journal of Science Education and Technology, 29(1), 1–8. https://doi.org/10.1007/s10956-019-09803-w
Marshall, C., & Rossman, G. B. (2006). Designing qualitative research (4th ed.). Sage.
McNiff, J., & Whitehead, J. (2011). All you need to know about action research (2nd ed.). Sage.
Malan, D. J. & Leitner, H. H. (2007). Scratch for budding computer scientists. In Proceedings of the 38th SIGCSE technical symposium on Computer science education, (pp. 223–227). ACM.
Miles, M., & Huberman, A. M. (1994). Qualitative data analysis: an expanded sourcebook (2nd ed.). Sage.
Ministry of Education (MOE). (2018). The information technologies and software course educational program. Ministry of Education Publishing.
Mouza, C., Marzocchi, A., Pan, Y., & Pollock, L. (2016). Development, implementation, and outcomes of an equitable computer science after-school program: findings from middle-school students. Journal of Research on Technology in Education, 48(2), 84–104. https://doi.org/10.1080/15391523.2016.1146561
Mueller, J., Beckett, D., Hennessey, E., & Shodiev, H. (2017). Assessing computational thinking across the curriculum. In P. Rich & C. Hodges (Eds.), Emerging research, practice, and policy on computational thinking. Educational communications and technology: Issues and innovations (pp. 251–267). Springer. https://doi.org/10.1007/978-3-319-52691-1_16
Nordby, S. K., Bjerke, A. H., & Mifsud, L. (2022). Computational thinking in the primary mathematics classroom: a systematic review. Digital Experiences in Mathematics Education, 8, 27–49. https://doi.org/10.1007/s40751-022-00102-5
Pala, F. K., & Mıhçı-Türker, P. (2021). The effects of different programming trainings on the computational thinking skills. Interactive Learning Environments, 29(7), 1090–1100. https://doi.org/10.1080/10494820.2019.1635495
Peters-Burton, E., Rich, E. J., Kitsantas, A., Laclede, L., & Stehle, S. M. (2022). High school science teacher use of planning tools to integrate computational thinking. Journal of Science Teacher Education, 33(6), 598–620. https://doi.org/10.1080/1046560X.2021.1970088
Polat, E., Hopcan, S., Kucuk, S., & Sisman, B. (2021). A comprehensive assessment of secondary school students’ computational thinking skills. British Journal of Educational Technology, 52, 1965–1980. https://doi.org/10.1111/bjet.13092
Poulakis, E., & Politis, P. (2021). Computational thinking assessment: literature review. In: Tsiatsos, T., Demetriadis, S., Mikropoulos, A., Dagdilelis, V. (eds) Research on E-Learning and ICT in Education. Springer. https://doi.org/10.1007/978-3-030-64363-8_7
Prottsman, C. L. (2011). Computational thinking and women in computer science. Master’s thesis, University of Oregon. Retrieved from http://hdl.handle.net/1794/11485. Accessed 15.04.2022
Rich, K., & Yadavi, A. (2019, March 18). Infusing computational thinking instruction into elementary mathematics and science: Patterns of teacher implementation. Association for the Advancement of Computing in Education (AACE).
Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the computational thinking test. Computers in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047
Román-González, M., Pérez-González, J. C., Moreno-León, J., & Robles, G. (2018). Can computational talent be detected? Predictive validity of the computational thinking test. International Journal of Child-Computer Interaction, 18, 47–58. https://doi.org/10.1016/j.ijcci.2018.06.004
Román-González, M., Moreno-León, J., & Robles, G. (2019). Combining assessment tools for a comprehensive evaluation of computational thinking interventions. In S. Kong, & H. Abelson (Eds.), Computational thinking education (pp. 79–98). Springer. https://doi.org/10.1007/978-981-13-6528-7_6
Saritepeci, M. (2020). Developing computational thinking skills of high school students: design-based learning activities and programming tasks. Asia-Pacific Education Researcher, 29(1), 35–54. https://doi.org/10.1007/s40299-019-00480-2
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003
Sun, L., Hu, L., & Zhou, D. (2022a). Programming attitudes predict computational thinking: analysis of differences in gender and programming experience. Computers & Education, 181, 104457. https://doi.org/10.1016/j.compedu.2022.104457
Sun, L., Hu, L., & Zhou, D. (2022b). Single or combined? A study on programming to promote junior high school students’ computational thinking skills. Journal of Educational Computing Research, 60(2), 283–321. https://doi.org/10.1177/07356331211035182
Sun, L., Hu, L., & Zhou, D. (2021). Which way of design programming activities is more effective to promote K-12 students’ computational thinking skills? A meta-analysis. Journal of Computer Assisted Learning, 37(4), 1048–1062. https://doi.org/10.1111/jcal.12545
Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: a systematic review of empirical studies. Computers & Education, 148, 103798. https://doi.org/10.1016/j.compedu.2019.103798
Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education: towards an agenda for research and practice. Education and Information Technologies, 20, 715–728. https://doi.org/10.1007/s10639-015-9412-6
Werner, L., Denner, J., Campe, S., & Kawamato, D. C. (2012, February 29-March 3). The fairy performance assessment: measuring computational thinking in middle school. SIGCSE. https://doi.org/10.1145/2157136.2157200
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society of London A: Mathematical Physical and Engineering Sciences, 366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118
Wing, J. M. (2010). Computational thinking: what and why? Unpublished Manuscript.
Wu, S. Y., & Su, Y. S. (2021). Visual programming environments and computational thinking performance of fifth- and sixth-grade students. Journal of Educational Computing Research, 59(6), 1075–1092. https://doi.org/10.1177/0735633120988807
Zhang, L. C., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9. Computers & Education, 141. https://doi.org/10.1016/j.compedu.2019.103607