Khám phá cơ chế phân tử của những biến đổi trong khớp ở bệnh hoại tử xương đầu xương đùi bằng cách sử dụng proteomics DIA và phân tích sinh học thông tin
Tóm tắt
Từ khóa
#hoại tử xương #đầu xương đùi #proteomics #sinh học thông tin #protein chínhTài liệu tham khảo
Liang XZ, Li N, Chai JL, et al. Knowledge mapping of programmed cell death in osteonecrosis of femoral head: a bibliometric analysis (2000–2022). J Orthop Surg Res. 2023;18(1):864. https://doi.org/10.1186/s13018-023-04314-2.
Wang M, Zhao R, Hao Y, et al. Return to work status of patients under 65 years of age with osteonecrosis of the femoral head after total hip arthroplasty. J Orthop Surg Res. 2023;18(1):783. https://doi.org/10.1186/s13018-023-04283-6.
Zheng H, Ye B, Huang K, et al. Laboratory indices in patients with osteonecrosis of the femoral head: a retrospective comparative study. J Orthop Surg Res. 2023;18(1):750. https://doi.org/10.1186/s13018-023-04235-0.
Liu FQ. Analysis of differentially expressed genes in rheumatoid arthritis and osteoarthritis by integrated microarray analysis. J Cell Biochem. 2019;120(8):12653–64. https://doi.org/10.1002/jcb.28533.
Migliorini F, Maffulli N, Baroncini A, et al. Prognostic factors in the management of osteonecrosis of the femoral head: a systematic review. Surgeon. 2023;21(2):85–98. https://doi.org/10.1016/j.surge.2021.12.004.
Xiao F, Wei T, Xiao H, et al. Decreased serum 4-Hydroxynonenal level as a biomarker for the progression of steroid-induced osteonecrosis of the femoral head. J Orthop Surg Res. 2023;18(1):732. https://doi.org/10.1186/s13018-023-04153-1.
Yuan Z, Huan D, Dou W, et al. Alteration in microcirculation with osteonecrosis of the femoral head: a study of dynamic contrast-enhanced MRI. Orthopedics. 2023. https://doi.org/10.3928/01477447-20230922-01.
Peng P, He M, Fang W, et al. Plasma 8-OHdG act as a biomarker for steroid-induced osteonecrosis of the femoral head. BMC Musculoskelet Disord. 2023;24(1):808. https://doi.org/10.1186/s12891-023-06804-0.
Li JT, Zeng N, Yan ZP, et al. A review of applications of metabolomics in osteoarthritis. Clin Rheumatol. 2021;40(7):2569–79. https://doi.org/10.1007/s10067-020-05511-8.
Han N, Li Z. Non-coding RNA Identification in osteonecrosis of the femoral head using competitive endogenous RNA network analysis. Orthop Surg. 2021;13(3):1067–76. https://doi.org/10.1111/os.12834.
Sibilska A, Goralczyk A, Hermanowicz K, et al. Spontaneous osteonecrosis of the knee: what do we know so far? A literature review. Int Orthop. 2020;44(6):1063–9. https://doi.org/10.1007/s00264-020-04536-7.
Yoon BH, Mont MA, Koo KH, et al. The 2019 revised version of association research circulation osseous staging system of osteonecrosis of the femoral head. J Arthroplasty. 2020;35(4):933–40. https://doi.org/10.1016/j.arth.2019.11.029.
Kim SS, Kim HJ, Kim KW, et al. Comparative analysis between short stem and conventional femoral stem in patients with osteonecrosis of femoral head: metha stem and excia stem. Orthop Surg. 2020;12(3):819–26. https://doi.org/10.1111/os.12684.
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13. https://doi.org/10.1093/nar/gky1131.
Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–12. https://doi.org/10.1093/nar/gkaa1074.
Showiheen SAA, Sun AR, Wu X, et al. Application of metabolomics to osteoarthritis: from basic science to the clinical approach. Curr Rheumatol Rep. 2019;21(6):26. https://doi.org/10.1007/s11926-019-0827-8.
Song J, Wu J, Poulet B, et al. Proteomics analysis of hip articular cartilage identifies differentially expressed proteins associated with osteonecrosis of the femoral head. Osteoarthr Cartil. 2021;29(7):1081–92. https://doi.org/10.1016/j.joca.2021.04.005.
Migliorini F, La Padula G, Oliva F, et al. Operative management of avascular necrosis of the femoral head in skeletally immature patients: a systematic review. Life. 2022. https://doi.org/10.3390/life12020179.
Andronic O, Weiss O, Shoman H, et al. What are the outcomes of core decompression without augmentation in patients with nontraumatic osteonecrosis of the femoral head? Int Orthop. 2021;45(3):605–13. https://doi.org/10.1007/s00264-020-04790-9.
Kuroda Y, Okuzu Y, Kawai T, et al. Difference in therapeutic strategies for joint-preserving surgery for non-traumatic osteonecrosis of the femoral head between the United States and Japan: a review of the literature. Orthop Surg. 2021;13(3):742–8. https://doi.org/10.1111/os.12979.
Tian L, Sun S, Li W, et al. Down-regulated microRNA-141 facilitates osteoblast activity and inhibits osteoclast activity to ameliorate osteonecrosis of the femoral head via up-regulating TGF-beta2. Cell Cycle. 2020;19(7):772–86. https://doi.org/10.1080/15384101.2020.1731053.
Sadile F, Bernasconi A, Russo S, et al. Core decompression versus other joint preserving treatments for osteonecrosis of the femoral head: a meta-analysis. Br Med Bull. 2016;118(1):33–49. https://doi.org/10.1093/bmb/ldw010.
Carlson AK, Rawle RA, Adams E, et al. Application of global metabolomic profiling of synovial fluid for osteoarthritis biomarkers. Biochem Biophys Res Commun. 2018;499(2):182–8. https://doi.org/10.1016/j.bbrc.2018.03.117.
Chen G, Zhong L, Wang Q, et al. The expression of chondrogenesis-related and arthritis-related genes in human ONFH cartilage with different Ficat stages. PeerJ. 2019;7:e6306. https://doi.org/10.7717/peerj.6306.
Geng W, Zhang W, Ma J. IL-9 exhibits elevated expression in osteonecrosis of femoral head patients and promotes cartilage degradation through activation of JAK-STAT signaling in vitro. Int Immunopharmacol. 2018. https://doi.org/10.1016/j.intimp.2018.05.005.
Wu J, Du Y, Song J, et al. Genome-wide DNA methylation profiling of hip articular cartilage identifies differentially methylated loci associated with osteonecrosis of the femoral head. Bone. 2019. https://doi.org/10.1016/j.bone.2019.06.021.
Meng CY, Xue F, Zhao ZQ, et al. Influence of MicroRNA-141 on inhibition of the proliferation of bone marrow mesenchymal stem cells in steroid-induced osteonecrosis via SOX11. Orthop Surg. 2020;12(1):277–85. https://doi.org/10.1111/os.12603.
Li WC, Bai L, Xu Y, et al. Identification of differentially expressed genes in hip cartilage with femoral head necrosis, based on genomewide expression profiles. Mol Med Rep. 2019;20(3):2073–82. https://doi.org/10.3892/mmr.2019.10458.
Migliorini F, Maffulli N, Eschweiler J, et al. Core decompression isolated or combined with bone marrow-derived cell therapies for femoral head osteonecrosis. Expert Opin Biol Ther. 2021;21(3):423–30. https://doi.org/10.1080/14712598.2021.1862790.
Wang W, Liu Y, Hao J, et al. Comparative analysis of gene expression profiles of hip articular cartilage between non-traumatic necrosis and osteoarthritis. Gene. 2016;591(1):43–7. https://doi.org/10.1016/j.gene.2016.06.058.
Ma HY, Ma N, Liu YF, et al. Core decompression with local administration of zoledronate and enriched bone marrow mononuclear cells for treatment of non-traumatic osteonecrosis of femoral head. Orthop Surg. 2021;13(6):1843–52. https://doi.org/10.1111/os.13100.
Wu Z, Wang B, Tang J, et al. Degradation of subchondral bone collagen in the weight-bearing area of femoral head is associated with osteoarthritis and osteonecrosis. J Orthop Surg Res. 2020;15(1):526. https://doi.org/10.1186/s13018-020-02065-y.
Klose-Jensen R, Hartlev LB, Thomsen JS, et al. Calcified cartilage in patients with osteoarthritis of the hip compared to that of healthy subjects. A design-based histological study. Bone. 2021. https://doi.org/10.1016/j.bone.2020.115660.
Quaranta M, Miranda L, Oliva F, et al. Osteotomies for avascular necrosis of the femoral head. Br Med Bull. 2021;137(1):98–111. https://doi.org/10.1093/bmb/ldaa044.