Khám Phá Các Đối Tượng Inert Tại CLIC

Journal of High Energy Physics - Tập 2019 - Trang 1-24 - 2019
Jan Kalinowski1, Wojciech Kotlarski2, Tania Robens3,4, Dorota Sokolowska1,5, Aleksander Filip Żarnecki1
1Faculty of Physics, University of Warsaw, Warszawa, Poland
2Institut für Kern- und Teilchenphysik, TU Dresden, Dresden, Germany
3MTA-DE Particle Physics Research Group, University of Debrecen, Debrecen, Hungary
4Theoretical Physics Division, Rudjer Boskovic Institute, Zagreb, Croatia
5International Institute of Physics, Universidade Federal do Rio Grande do Norte, Campus Universitario, Natal, Brazil

Tóm tắt

Chúng tôi điều tra khả năng phát hiện các đối tượng vô hại của mô hình doublet tại CLIC. Là các quá trình tín hiệu, chúng tôi xem xét việc sản xuất cặp các đối tượng vô hại, cụ thể là e+e− → H+H− và e+e− → AH, sau đó là sự phân rã của các đối tượng vô hại H± và A thành các trạng thái leptonic cuối cùng và năng lượng ngang bị mất. Chúng tôi tập trung vào các dấu hiệu tín hiệu với hai muon hoặc một electron và một cặp muon trong trạng thái cuối cùng. Một số kịch bản tiêu chuẩn được chọn đã bao trùm các dấu hiệu va chạm có thể có của IDM được cân nhắc. Để giảm thiểu độ nền SM với cùng một dấu hiệu khả kiến, các phương pháp phân tích đa biến được áp dụng. Đối với một số điểm chuẩn, việc phát hiện đã có khả năng tại giai đoạn năng lượng thấp của CLIC. Triển vọng điều tra các kịch bản chỉ có thể tiếp cận ở các năng lượng va chạm cao hơn cũng được thảo luận.

Từ khóa

#Inert Doublet Model #CLIC #sản xuất cặp các đối tượng vô hại #phân rã #phương pháp phân tích đa biến #năng lượng va chạm cao

Tài liệu tham khảo

N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev.D 18 (1978) 2574 [INSPIRE]. Q.-H. Cao, E. Ma and G. Rajasekaran, Observing the Dark Scalar Doublet and its Impact on the Standard-Model Higgs Boson at Colliders, Phys. Rev.D 76 (2007) 095011 [arXiv:0708.2939] [INSPIRE]. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev.D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE]. J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A.F. Żarnecki, Benchmarking the Inert Doublet Model for e +e −colliders, JHEP12 (2018) 081 [arXiv:1809.07712] [INSPIRE]. L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP02 (2007) 028 [hep-ph/0612275] [INSPIRE]. E. Lundstrom, M. Gustafsson and J. Edsjo, The Inert Doublet Model and LEP II Limits, Phys. Rev. D 79 (2009) 035013 [arXiv:0810.3924] [INSPIRE]. E. Dolle, X. Miao, S. Su and B. Thomas, Dilepton Signals in the Inert Doublet Model, Phys. Rev.D 81 (2010) 035003 [arXiv:0909.3094] [INSPIRE]. E.M. Dolle and S. Su, The Inert Dark Matter, Phys. Rev.D 80 (2009) 055012 [arXiv:0906.1609] [INSPIRE]. L. Lopez Honorez and C.E. Yaguna, The inert doublet model of dark matter revisited, JHEP09 (2010) 046 [arXiv:1003.3125] [INSPIRE]. X. Miao, S. Su and B. Thomas, Trilepton Signals in the Inert Doublet Model, Phys. Rev.D 82 (2010) 035009 [arXiv:1005.0090] [INSPIRE]. M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom, Status of the Inert Doublet Model and the Role of multileptons at the LHC, Phys. Rev.D 86 (2012) 075019 [arXiv:1206.6316] [INSPIRE]. A. Arhrib, R. Benbrik and N. Gaur, H → γγ in Inert Higgs Doublet Model, Phys. Rev.D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE]. B. Swiezewska and M. Krawczyk, Diphoton rate in the inert doublet model with a 125 GeV Higgs boson, Phys. Rev.D 88 (2013) 035019 [arXiv:1212.4100] [INSPIRE]. M. Aoki, S. Kanemura and H. Yokoya, Reconstruction of Inert Doublet Scalars at the International Linear Collider, Phys. Lett.B 725 (2013) 302 [arXiv:1303.6191] [INSPIRE]. S.-Y. Ho and J. Tandean, Probing Scotogenic Effects in e +e −Colliders, Phys. Rev.D 89 (2014) 114025 [arXiv:1312.0931] [INSPIRE]. A. Arhrib, Y.-L.S. Tsai, Q. Yuan and T.-C. Yuan, An Updated Analysis of Inert Higgs Doublet Model in light of the Recent Results from LUX, PLANCK, AMS-02 and LHC, JCAP06 (2014) 030 [arXiv:1310.0358] [INSPIRE]. M. Krawczyk, D. Sokolowska, P. Swaczyna and B. Swiezewska, Constraining Inert Dark Matter by R γγand WMAP data, JHEP09 (2013) 055 [arXiv:1305.6266] [INSPIRE]. A. Goudelis, B. Herrmann and O. Stal, Dark matter in the Inert Doublet Model after the discovery of a Higgs-like boson at the LHC, JHEP09 (2013) 106 [arXiv:1303.3010] [INSPIRE]. I.F. Ginzburg, Measuring mass and spin of Dark Matter particles with the aid energy spectra of single lepton and dijet at the e +e −Linear Collider, J. Mod. Phys.5 (2014) 1036 [arXiv:1410.0869] [INSPIRE]. G. Bélanger, B. Dumont, A. Goudelis, B. Herrmann, S. Kraml and D. Sengupta, Dilepton constraints in the Inert Doublet Model from Run 1 of the LHC, Phys. Rev.D 91 (2015) 115011 [arXiv:1503.07367] [INSPIRE]. N. Blinov, J. Kozaczuk, D.E. Morrissey and A. de la Puente, Compressing the Inert Doublet Model, Phys. Rev.D 93 (2016) 035020 [arXiv:1510.08069] [INSPIRE]. A. Arhrib, R. Benbrik, J. El Falaki and A. Jueid, Radiative corrections to the Triple Higgs Coupling in the Inert Higgs Doublet Model, JHEP12 (2015) 007 [arXiv:1507.03630] [INSPIRE]. A. Ilnicka, M. Krawczyk and T. Robens, Inert Doublet Model in light of LHC Run I and astrophysical data, Phys. Rev.D 93 (2016) 055026 [arXiv:1508.01671] [INSPIRE]. P. Poulose, S. Sahoo and K. Sridhar, Exploring the Inert Doublet Model through the dijet plus missing transverse energy channel at the LHC, Phys. Lett.B 765 (2017) 300 [arXiv:1604.03045] [INSPIRE]. A. Datta, N. Ganguly, N. Khan and S. Rakshit, Exploring collider signatures of the inert Higgs doublet model, Phys. Rev.D 95 (2017) 015017 [arXiv:1610.00648] [INSPIRE]. S. Kanemura, M. Kikuchi and K. Sakurai, Testing the dark matter scenario in the inert doublet model by future precision measurements of the Higgs boson couplings, Phys. Rev.D 94 (2016) 115011 [arXiv:1605.08520] [INSPIRE]. A.G. Akeroyd et al., Prospects for charged Higgs searches at the LHC, Eur. Phys. J.C 77 (2017) 276 [arXiv:1607.01320] [INSPIRE]. N. Wan et al., Searches for Dark Matter via Mono-W Production in Inert Doublet Model at the LHC, Commun. Theor. Phys.69 (2018) 617 [INSPIRE]. A. Ilnicka, T. Robens and T. Stefaniak, Constraining Extended Scalar Sectors at the LHC and beyond, Mod. Phys. Lett.A 33 (2018) 1830007 [arXiv:1803.03594] [INSPIRE]. A. Belyaev et al., Advancing LHC probes of dark matter from the inert two-Higgs-doublet model with the monojet signal, Phys. Rev.D 99 (2019) 015011 [arXiv:1809.00933] [INSPIRE]. S. Nie and M. Sher, Vacuum stability bounds in the two Higgs doublet model, Phys. Lett.B 449 (1999) 89 [hep-ph/9811234] [INSPIRE]. I.F. Ginzburg, K.A. Kanishev, M. Krawczyk and D. Sokolowska, Evolution of Universe to the present inert phase, Phys. Rev.D 82 (2010) 123533 [arXiv:1009.4593] [INSPIRE]. M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting W’s and Z’s, Nucl. Phys.B 261 (1985) 379 [INSPIRE]. I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev.D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE]. Gfitter Group collaboration, The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J.C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE]. G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett.B 253 (1991) 161 [INSPIRE]. M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett.65 (1990) 964 [INSPIRE]. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev.D 46 (1992) 381 [INSPIRE]. I. Maksymyk, C.P. Burgess and D. London, Beyond S, T and U, Phys. Rev.D 50 (1994) 529 [hep-ph/9306267] [INSPIRE]. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE]. A. Pierce and J. Thaler, Natural Dark Matter from an Unnatural Higgs Boson and New Colored Particles at the TeV Scale, JHEP 08 (2007) 026 [hep-ph/0703056] [INSPIRE]. D. Dercks and T. Robens, Constraining the Inert Doublet Model using Vector Boson Fusion, arXiv:1812.07913 [INSPIRE]. J. Heisig, S. Kraml and A. Lessa, Constraining new physics with searches for long-lived particles: Implementation into SModelS, Phys. Lett.B 788 (2019) 87 [arXiv:1808.05229] [INSPIRE]. CMS collaboration, Measurements of the Higgs boson width and anomalous HV V couplings from on-shell and off-shell production in the four-lepton final state, Phys. Rev.D 99 (2019) 112003 [arXiv:1901.00174] [INSPIRE]. CMS collaboration, Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s} \) = 7, 8 and 13TeV, JHEP02 (2017) 135 [arXiv:1610.09218] [INSPIRE]. ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP08 (2016) 045 [arXiv:1606.02266] [INSPIRE]. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun.181 (2010) 138 [arXiv:0811.4169] [INSPIRE]. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun.182 (2011) 2605 [arXiv:1102.1898] [INSPIRE]. P. Bechtle et al., Recent Developments in HiggsBounds and a Preview of HiggsSignals, PoS(CHARGED2012)024 (2012) [arXiv:1301.2345] [INSPIRE]. P. Bechtle et al., HiggsBounds-4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J.C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE]. P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors, Eur. Phys. J.C 75 (2015) 421 [arXiv:1507.06706] [INSPIRE]. P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J.C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE]. P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC, JHEP11 (2014) 039 [arXiv:1403.1582] [INSPIRE]. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE]. C. Garcia-Cely, M. Gustafsson and A. Ibarra, Probing the Inert Doublet Dark Matter Model with Cherenkov Telescopes, JCAP02 (2016) 043 [arXiv:1512.02801] [INSPIRE]. XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett.121 (2018) 111302 [arXiv:1805.12562] [INSPIRE]. M. Klasen, C.E. Yaguna and J.D. Ruiz-Alvarez, Electroweak corrections to the direct detection cross section of inert Higgs dark matter, Phys. Rev.D 87 (2013) 075025 [arXiv:1302.1657] [INSPIRE]. IceCube collaboration, Search for annihilating dark matter in the Sun with 3 years of IceCube data, Eur. Phys. J.C 77 (2017) 146 [Erratum ibid.C 79 (2019) 214] [arXiv:1612.05949] [INSPIRE]. MAGIC and Fermi-LAT collaborations, Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies, JCAP02 (2016) 039 [arXiv:1601.06590] [INSPIRE]. D. Eriksson, J. Rathsman and O. Stal, 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual, Comput. Phys. Commun.181 (2010) 189 [arXiv:0902.0851] [INSPIRE]. D. Barducci et al., Collider limits on new physics within MicrOMEGAs 4.3, Comput. Phys. Commun.222 (2018) 327 [arXiv:1606.03834] [INSPIRE]. B. Dutta, G. Palacio, J.D. Ruiz-Alvarez and D. Restrepo, Vector Boson Fusion in the Inert Doublet Model, Phys. Rev.D 97 (2018) 055045 [arXiv:1709.09796] [INSPIRE]. CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett.B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE]. J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A.F. Żarnecki, IDM benchmarks for the LHC at 13 and 27 TeV, Submitted to the Higgs Cross Section Working Group, October 2018. T. Robens, IDM benchmarks for the LHC at 13 and 27 TeV, talk at The Higgs Cross Section Working Group Wg3 Subgroup Meeting, 24 October 2018 [https://indico.cern.ch/event/767041/]. F. Zimmermann et al., Future Circular Collider, CERN-ACC-2018-0059. M. Moretti, T. Ohl and J. Reuter, O’Mega: An Optimizing matrix element generator, hep-ph/0102195 [INSPIRE]. W. Kilian, T. Ohl and J. Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC and ILC, Eur. Phys. J.C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE]. F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys.2015 (2015) 840780 [arXiv:1503.04200] [INSPIRE]. W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e +e −colliders, Comput. Phys. Commun.153 (2003) 275 [hep-ph/0301101] [INSPIRE]. W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun.183 (2012) 2458 [arXiv:1104.1573] [INSPIRE]. L. Linssen, A. Miyamoto, M. Stanitzki and H. Weerts, Physics and Detectors at CLIC: CLIC Conceptual Design Report, arXiv:1202.5940 [INSPIRE]. A. Hocker et al., TMVA — Toolkit for Multivariate Data Analysis, physics/0703039 [INSPIRE]. A. Robson and P. Roloff, Updated CLIC luminosity staging baseline and Higgs coupling prospects, arXiv:1812.01644 [INSPIRE].