Exploring Expression Data: Identification and Analysis of Coexpressed Genes

Genome Research - Tập 9 Số 11 - Trang 1106-1115 - 1999
Laurie J. Heyer1, Semyon Kruglyak1, Shibu Yooseph1
1Department of Mathematics, University of Southern California, California, USA.

Tóm tắt

Analysis procedures are needed to extract useful information from the large amount of gene expression data that is becoming available. This work describes a set of analytical tools and their application to yeast cell cycle data. The components of our approach are (1) a similarity measure that reduces the number of false positives, (2) a new clustering algorithm designed specifically for grouping gene expression patterns, and (3) an interactive graphical cluster analysis tool that allows user feedback and validation. We use the clusters generated by our algorithm to summarize genome-wide expression and to initiate supervised clustering of genes into biologically meaningful groups.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.96.12.6745

10.1016/S1097-2765(00)80114-8

10.1126/science.282.5389.699

10.1126/science.278.5338.680

Efron B. (1982) The Jackknife, the Bootstrap, and Other Resampling Plans. CBMS-NSF Regional Conference Series in Applied Mathematics; 38 . (Society for Industrial & Applied Mathematics).

10.1073/pnas.95.25.14863

10.1038/364555a0

Hartigan J. (1975) Clustering algorithms. (John Wiley & Sons, New York, NY).

Kaufman L. Rousseeuw P. (1990) Finding groups in data: An introduction to cluster analysis. (John Wiley & Sons, New York, NY).

Kohonen T. (1997) Self-organizing maps. (Springer Verlag, Berlin, Germany).

10.1038/nbt1296-1675

10.1038/386569a0

10.1126/science.270.5235.467

10.1091/mbc.9.12.3273

10.1073/pnas.96.6.2907

10.1038/10343

Theodoridis S. Koutroumbas K. (1999) Pattern recognition. (Academic Press, New York, NY).

Venables W. Ripley B. (1997) Modern applied statistics with S-PLUS. (Springer Verlag, Berlin, Germany).

10.1073/pnas.95.1.334

10.1038/nbt1297-1359