Exploration of some novel solutions to a coupled Schrödinger–KdV equations in the interactions of capillary-gravity waves
Tóm tắt
Tài liệu tham khảo
Kumar, A., Pankaj, R.D.: Laplace decomposition method to study solitary wave solutions of coupled nonlinear partial differential equations. ISRN Computational Math. (2012). https://doi.org/10.5402/2012/423469
Kumar, D., Hosseini, K., Kaabar, M.K.A., Kaplan, M., Salahshour, S.: On some novel soliton solutions to the generalized Schrödinger-Boussinesq equations for the interaction between complex short wave and real long wave envelope. J. Ocean Eng. Sci. 2021 https://doi.org/10.1016/j.joes.2021.09.008
Kaabar, M.K.A., Kaplan, M., Siri, Z.: New Exact Soliton Solutions of the (3+1)-Dimensional Conformable Wazwaz-Benjamin-Bona-Mahony Equation via Two Novel Techniques. J. Funct. Spaces. Article ID 4659905 (2021). https://doi.org/10.1155/2021/4659905
Ray, S.: Nonlinear differential equations in Physics. Springer, Berlin (2020). https://doi.org/10.1007/978-981-15-1656-6
Seadawy, A.R.: El-Rashidy K. Classification of multiply travelling wave solutions for coupled burgers, Combined KdV-Modified KdV, and Schrödinger-KdV Equations. Abstr. Appl. Anal. 369294 (2015). https://doi.org/10.1155/2015/369294
Abu-Shady, M., Kaabar, M.K.A.: A generalized definition of the fractional derivative with applications. Math. Prob. Eng. 2021. https://doi.org/10.1155/2021/9444803
He, J.H., He, C.H., Saeed, T.: A fractal modification of Chen-Lee-Liu equation and its fractal variational principle. Int. J. Mod. Phys. B. 35(21), 2150214 (2021). https://doi.org/10.1142/S0217979221502143
Ma, W.X.: Soliton solutions by means of Hirota bilinear forms. Partial Differ. Equ. Appl. Math. 5, 100220 (2022). https://doi.org/10.1016/j.padiff.2021.100220
Ma, W.X.: Nonlocal PT-symmetric integrable equations and related Riemann-Hilbert problems. Partial Differ. Equ. Appl. Math. 4, 100190 (2021). https://doi.org/10.1016/j.padiff.2021.100190
Ma, W.X.: Riemann-Hilbert problems and soliton solutions of nonlocal reverse-time NLS hierarchies. Acta Mathematica Scientia. 42, 127–140 (2022). https://doi.org/10.1007/s10473-022-0106-z
Ma, W.X.: Reduced nonlocal integrable mKdV equations of type \((-\lambda , \lambda )\) and their exact soliton solutions. Communications in Theoretical Physics. 74(6), 104522 (2022). https://doi.org/10.1088/1572-9494/ac75e0
Baskonus, H.M., Sulaiman, T.A., Bulut, H.: Dark, bright and other optical solitons to the decoupled nonlinear Schrödinger equation arising in dual-core optical fibers. Optical Quantum Electron. 50(4), 165 (2018). https://doi.org/10.1007/s11082-018-1433-0
Kaabar, M.: Novel Methods for Solving the Conformable Wave Equation. J. New Theory 31, 56–85 (2020)
He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos, Solitons & Fractals 30(3), 700–708 (2006)
Matar, M.M., Abbas, M.I., Alzabut, J., Kaabar, M.K.A., Etemad, S., Rezapour, S.: Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 68 (2021). https://doi.org/10.1186/s13662-021-03228-9
Abu-Shady, M., Kaabar, M.K.A.: A novel computational tool for the fractional-order special functions arising from modeling scientific phenomena via Abu-Shady–Kaabar fractional derivative. Computational and Mathematical Methods in Medicine 2022 (2022). https://doi.org/10.1155/2022/2138775
