Exploiting multimode waveguides for pure fibre-based imaging

Nature Communications - Tập 3 Số 1
Tomáš Čižmár1, Kishan Dholakia2
1School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
2SUPA, School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

Čižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nat. Photon. 4, 388–394 (2010).

Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nat. Commun. 1, 81 (2010).

Vellekoop, I. M., Lagendijk, A. & Mosk, A. Exploiting disorder for perfect focusing. Nat. Photon. 4, 320–322 (2010).

Ji, N., Milkie, D. E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Meth. 7, 141–147 (2010).

Flusberg, B. A. et al. Fiber-optic fluorescence imaging. Nat. Meth. 2, 941–950 (2005).

Hopkins, H. H. & Kapany, N. S. A flexible fibrescope, using static scanning. Nature 173, 39–41 (1954).

Berci, G. Professor Harold H. Hopkins. Surg. Endosc. 9, 667–668 (1995).

Sung, K. B. et al. Fiber-optic confocal reflectance microscope with miniature objective for in-vivo imaging of human tissues. Biomed. Eng. IEEE Trans. 49, 1168–1172 (2002).

Flusberg, B. A. et al. High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat. Meth. 5, 935–938 (2008).

Perneczky, A. & Fries, G. Endoscope-assisted brain surgery: part 1 - evolution, basic concept, and current technique. Neurosurgery 42, 219–224 (1998).

Muldoon, T. J. et al. Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy. Opt. Express 15, 16413–16423 (2007).

Lane, P. M., Dlugan, A. L. P., Richards-Kortum, R. & MacAulay, C. E. Fiber-optic confocal microscopy using a spatial light modulator. Opt. Lett. 25, 1780–1782 (2000).

Ghaemi, H. F., Li, Y., Thio, T. & Wang, T. Fiber image guide with subwavelength resolution. Appl. Phys. Lett. 72, 1137–1139 (1998).

Holtfreter, M. C. et al. Confocal laser scanning microscopy for detection of Schistosoma mansoni eggs in the gut of mice. PLoS One 6, e18799 (2011).

Myaing, M. T., MacDonald, D. J. & Li, X. Fiber-optic scanning two-photon fluorescence endoscope. Opt. Lett. 31, 1076–1078 (2006).

Engelbrecht, C. J., Johnston, R. S., Seibel, E. J. & Helmchen, F. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Opt. Express 16, 5556–5564 (2008).

Bianchi, S. & Di Leonardo, R. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip 12, 635–639 (2012).

Čižmár, T. & Dholakia, K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express 19, 18871–18884 (2011).

Akselrod, G. M. et al. Laser-guided assembly of heterotypic three-dimensional living cell microarrays. Biophys. J. 91, 3465–3473 (2006).

Čižmár, T., Dalgarno, H. I. C., Ashok, P. C., Gunn-Moore, F. J. & Dholakia, K. Interference-free superposition of nonzero order light modes: functionalized optical landscapes. Appl. Phys. Lett. 98, 081114 (2011).

Čižmár, T., Dalgarno, H. I. C., Ashok, P. C., Gunn-Moore, F. J. & Dholakia, K. Optical aberration compensation in a multiplexed optical trapping system. J. Opt. 13, 044008 (2011).

Gambling, W. A., Payne, D. N. & Matsumura, H. Mode conversion coefficients in optical fibers. Appl. Opt. 14, 1538–1542 (1975).

Ozeri, R., Khaykovich, L. & Davidson, N. Long spin relaxation times in a single-beam blue-detuned optical trap. Phys. Rev. A 59, R1750–R1753 (1999).

Arlt, J. & Padgett, M. J. Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. Opt. Lett. 25, 191–193 (2000).

Čižmár, T. & Dholakia, K. Tunable bessel light modes: engineering the axial propagation. Opt. Express 17, 15558–15570 (2009).

Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).

Mazilu, M., Baumgartl, J., Kosmeier, S. & Dholakia, K. Optical eigenmodes; exploiting the quadratic nature of the energy flux and of scattering interactions. Opt. Express 19, 933–945 (2011).

De Luca, A. C., Kosmeier, S., Dholakia, K. & Mazilu, M. Optical eigenmode imaging. Phys. Rev. A 84, 021803 (2011).

Bakr, W. S., Gillen, J. I., Peng, A., Folling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice. Nature 462, 74–77 (2009).

Freund, I., Rosenbluh, M. & Feng, S. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328–2331 (1988).

Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988).

Leonardo, R. D. & Bianchi, S. Hologram transmission through multi-mode optical fibers. Opt. Express 19, 247–254 (2011).

Snyder, A. W. & Love, J. D. Optical Waveguide Theory (Chapman & Hall, 1983).