Exploiting Microstructural Instabilities in Solids and Structures: From Metamaterials to Structural Transitions

Applied Mechanics Reviews - Tập 69 Số 5 - 2017
Dennis M. Kochmann1, Katia Bertoldi2,3
1Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstr. 21, Zürich 8092, Switzerland; Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125 e-mail:
2John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Kavli Institute, Harvard University, Cambridge, MA 02138 e-mail:
3Kavli Institute,Harvard University,Cambridge, MA 02138e-mail:

Tóm tắt

Instabilities in solids and structures are ubiquitous across all length and time scales, and engineering design principles have commonly aimed at preventing instability. However, over the past two decades, engineering mechanics has undergone a paradigm shift, away from avoiding instability and toward taking advantage thereof. At the core of all instabilities—both at the microstructural scale in materials and at the macroscopic, structural level—lies a nonconvex potential energy landscape which is responsible, e.g., for phase transitions and domain switching, localization, pattern formation, or structural buckling and snapping. Deliberately driving a system close to, into, and beyond the unstable regime has been exploited to create new materials systems with superior, interesting, or extreme physical properties. Here, we review the state-of-the-art in utilizing mechanical instabilities in solids and structures at the microstructural level in order to control macroscopic (meta)material performance. After a brief theoretical review, we discuss examples of utilizing material instabilities (from phase transitions and ferroelectric switching to extreme composites) as well as examples of exploiting structural instabilities in acoustic and mechanical metamaterials.

Từ khóa


Tài liệu tham khảo

1759, Sur la force des colonnes, Mem. Acad. Berlin, 13, 252

1778, De altitudine colomnarum sub proprio pondere corruentium, Acta Acad. Sci. Petropolitana, 1, 191

1780, Determinatio onerum quae columnae gestare valent, Acta Acad. Sci. Petropolitana, 2, 163

1859, Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes, J. Reine Angew. Math., 1859, 285, 10.1515/crll.1859.56.285

1893, Mathematical Theory of Elasticity

1875, Elasticity, Encyclopedia Britannica

1878, On the Instability of Jets, Proc. London Math. Soc., s1-10, 4, 10.1112/plms/s1-10.1.4

1914, On the General Theory of Elastic Stability, Philos. Trans. R. Soc. London A, 213, 187, 10.1098/rsta.1914.0005

1961, Theory of Elastic Stability

1970, Stability Theory

1973, A General Theory of Elastic Stability

1980, Elementary Bifurcation and Stability Theory

1993, Homogenization of Nonlinearly Elastic Materials, Microscopic Bifurcation and Macroscopic Loss of Rank-One Convexity, Arch. Ration. Mech. Anal., 122, 231, 10.1007/BF00380256

1995, Theory of Stability of Continuous Elastic Structures

2000, Stability and Nonlinear Solid Mechanics

1968, Principles of Structural Stability

2006, Fundamentals of Structural Stability

1973, Theory of Elastic Stability, Handbook of Physics, 125302

1974, Theory of Buckling and Post-Buckling Behavior in Elastic Structures, Advances of Applied Mechanics, 1

2011, Deformation Induced Pattern Transformation in a Soft Granular Crystal, Soft Matter, 7, 2321, 10.1039/c0sm01408g

2012, Compaction Through Buckling in 2D Periodic, Soft and Porous Structures: Effect of Pore Shape, Adv. Mater., 24, 2337, 10.1002/adma.201104395

2012, Buckling-Induced Encapsulation of Structured Elastic Shells Under Pressure, Proc. Natl. Acad. Sci., 109, 5978, 10.1073/pnas.1115674109

2016, Stable Propagation of Mechanical Signals in Soft Media Using Stored Elastic Energy, Proc. Natl. Acad. Sci., 113, 9722, 10.1073/pnas.1604838113

2014, Buckling of Dielectric Elastomeric Plates for Soft, Electrically Active Microfluidic Pumps, Soft Matter, 10, 4789, 10.1039/C4SM00753K

2014, Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices, Science, 345, 1322, 10.1126/science.1255908

2015, Resilient 3D Hierarchical Architected Metamaterials, Proc. Natl. Acad. Sci., 112, 11502, 10.1073/pnas.1509120112

Anisotropic, Hierarchical Surface Patterns Via Surface Wrinkling of Nanopatterned Polymer Films, Nano Lett., 10.1021/nl303512d

2015, Morphing of Geometric Composites Via Residual Swelling, Soft Matter, 11, 5812, 10.1039/C5SM00863H

1999, Negative-Stiffness-Mechanism Vibration Isolation Systems, Proc. SPIE, 3786, 98, 10.1117/12.363841

2008, Negative Stiffness and Enhanced Damping of Individual Multiwalled Carbon Nanotubes, Phys. Rev. B, 77, 045423, 10.1103/PhysRevB.77.045423

2010, Vibration Isolation System Using Negative Stiffness, Vibration Control

2012, A Multi-Stage High-Speed Railroad Vibration Isolation System With Negative Stiffness, J. Sound Vib., 331, 914, 10.1016/j.jsv.2011.09.014

2012, Exploiting Pattern Transformation to Tune Phononic Band Gaps in a Two-Dimensional Granular Crystal, J. Acoust. Soc. Am., 131, EL475, 10.1121/1.4718384

2014, Harnessing Buckling to Design Tunable Locally Resonant Acoustic Metamaterials, Phys. Rev. Lett., 113, 014301, 10.1103/PhysRevLett.113.014301

2014, Transforming Wave Propagation in Layered Media Via Instability-Induced Wrinkling Interfacial Layer, Phys. Rev. Lett., 112, 034301, 10.1103/PhysRevLett.112.034301

2016, Tensional Acoustomechanical Soft Metamaterials, Sci. Rep., 6, 27432, 10.1038/srep27432

2001, Extreme Damping in Compliant Composites With a Negative-Stiffness Phase, Philos. Mag. Lett., 81, 95, 10.1080/09500830010015332

2001, Extreme Damping in Composite Materials With a Negative Stiffness Phase, Phys. Rev. Lett., 86, 2897, 10.1103/PhysRevLett.86.2897

2001, Extreme Damping in Composite Materials With Negative-Stiffness Inclusions, Nature, 410, 565, 10.1038/35069035

2007, Composite Materials With Viscoelastic Stiffness Greater Than Diamond, Science, 315, 620, 10.1126/science.1135837

2013, Tunable Active Acoustic Metamaterials, Phys. Rev. B, 88, 024303, 10.1103/PhysRevB.88.024303

2014, Broadband Control of the Viscoelasticity of Ferroelectrics Via Domain Switching, Appl. Phys. Lett., 105, 10.1063/1.4899055

2015, A Perspective on the Revival of Structural (In)Stability With Novel Opportunities for Function: From Buckliphobia to Buckliphilia, ASME J. Appl. Mech., 82, 111001, 10.1115/1.4031456

1952, Quasi-Convexity and the Lower Semicontinuity of Multiple Integrals, Pac. J. Math., 2, 10.2140/pjm.1952.2.25

1986, Quasiconvexity and Uniqueness of Equilibrium Solutions in Nonlinear Elasticity, 473

1937, On the Theory of Phase Transitions, Zh. Eksp. Teor. Fiz., 7, 19

1949, XCVI. Theory of Barium Titanate, Philos. Mag., 40, 1040, 10.1080/14786444908561372

1951, CIX. Theory of Barium Titanate: Part II, Philos. Mag., 42, 1065, 10.1080/14786445108561354

1987, Fine Phase Mixtures as Minimizers of Energy, Arch. Ration. Mech. Anal., 100, 13, 10.1007/BF00281246

1981, Finite Deformation by Mechanical Twinning, Arch. Ration. Mech. Anal., 77, 143, 10.1007/BF00250621

1995, Deformation Twinning, Prog. Mater. Sci., 39, 1, 10.1016/0079-6425(94)00007-7

2002, Non-Convex Potentials and Microstructures in Finite-Strain Plasticity, Proc. R. Soc. London, Ser. A, 458, 299, 10.1098/rspa.2001.0864

1999, Nonconvex Energy Minimization and Dislocation Structures in Ductile Single Crystals, J. Mech. Phys. Solids, 47, 397, 10.1016/S0022-5096(97)00096-3

2003, The Free Energy of Mixing for n-Variant Martensitic Phase Transformations Using Quasi-Convex Analysis, J. Mech. Phys. Solids, 51, I, 10.1016/S0022-5096(03)00015-2

2004, Analysis of Material Instabilities in Inelastic Solids by Incremental Energy Minimization and Relaxation Methods: Evolving Deformation Microstructures in Finite Plasticity, J. Mech. Phys. Solids, 52, 2725, 10.1016/j.jmps.2004.05.011

2004, Microstructure of Martensite—Why It Forms and How It Gives Rise to the Shape-Memory Effect

2012, Micro/Nanostructured Mechanical Metamaterials, Adv. Mater., 24, 4782, 10.1002/adma.201201644

2015, Mechanical Metamaterials: Design, Fabrication, and Performance, Winter

2016, Mechanical Metamaterials: Smaller and Stronger, Nat. Mater., 15, 10.1038/nmat4591

1978, Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications

1980, Non-Homogeneous Media and Vibration Theory

2000, Homogenisierungsmethoden der nichtlinearen kontinuumsmechanik unter beachtung von stabilitätsproblemen

2001, A Class of General Algorithms for Multi-Scale Analyses of Heterogeneous Media, Comput. Methods Appl. Mech. Eng., 190, 5427, 10.1016/S0045-7825(01)00179-7

2002, Computational Homogenization Analysis in Finite Elasticity: Material and Structural Instabilities on the Micro- and Macro-Scales of Periodic Composites and Their Interaction, Comput. Methods Appl. Mech. Eng., 191, 4971, 10.1016/S0045-7825(02)00391-2

2001, An Approach to Micro-Macro Modeling of Heterogeneous Materials, Comput. Mech., 27, 37, 10.1007/s004660000212

2001, Theory of Composites

1883, Sur les équations différentielles linéaires à coefficients périodiques, Ann. Ec. Norm. Supér., 12, 4788

1928, Über die Quantenmechanik der Elektronen in Kristallgittern, Z. Phys., 52, 550

2014, 3D Auxetic Microlattices With Independently-Controllable Acoustic Band Gaps and Quasi-Static Elastic Moduli, Adv. Eng. Mater., 16, 357, 10.1002/adem.201300264

Willis, J., 1981, “Variational and Related Methods for the Overall Properties of Composites,” Adv. Appl. Mech., 21, pp. 1–78.10.1016/S0065-2156(08)70330-2

1981, Variational Principles for Dynamic Problems for Inhomogeneous Elastic Media, Wave Motion, 3, 1, 10.1016/0165-2125(81)90008-1

1997, Dynamics of Composites, Continuum Micromechanics, 265, 10.1007/978-3-7091-2662-2_5

2007, On Modifications of Newton's Second Law and Linear Continuum Elastodynamics, Proc. R. Soc. A, 463, 855, 10.1098/rspa.2006.1795

2009, Exact Effective Relations for Dynamics of a Laminated Body, Mech. Mater., 41, 385, 10.1016/j.mechmat.2009.01.010

2011, Effective Constitutive Relations for Waves in Composites and Metamaterials, Proc. R. Soc. A, 467, 10.1098/rspa.2010.0620

2012, Analytical Formulation of Three-Dimensional Dynamic Homogenization for Periodic Elastic Systems, Proc. R. Soc. A, 468, 1629, 10.1098/rspa.2011.0698

2013, Transient Computational Homogenization for Heterogeneous Materials Under Dynamic Excitation, J. Mech. Phys. Solids, 61, 2125, 10.1016/j.jmps.2013.07.005

2015, Computational Homogenization of Heterogeneous Media Under Dynamic Loading, arXiv:1510.02310

1957, On Uniqueness and Stability in the Theory of Finite Elastic Strain, J. Mech. Phys. Solids, 5, 229, 10.1016/0022-5096(57)90016-9

1961, Uniqueness in General Boundary-Value Problems for Elastic or Inelastic Solids, J. Mech. Phys. Solids, 9, 114, 10.1016/0022-5096(61)90029-1

1976, Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Arch. Ration. Mech. Anal., 63, 337, 10.1007/BF00279992

1892, The General Problem of the Stability of Motion

1966, The General Problem of the Stability of Motion

1965, The Energy Criterion of Stability for Continuous Elastic Bodies, Proc. K. Ned. Acad. Wet. B, 868, 178

2011, Infinitely Stiff Composite Via a Rotation-Stabilized Negative-Stiffness Phase, Appl. Phys. Lett., 99, 10.1063/1.3609328

1953, Linear Elastic Stability, Z. Angew. Math. Phys., 4, 167, 10.1007/BF02083512

1999, The Variational Formulation of Viscoplastic Constitutive Updates, Comput. Methods Appl. Mech. Eng., 171, 419, 10.1016/S0045-7825(98)00219-9

2000, Structural Stability, Int. J. Solids Struct., 37, 55, 10.1016/S0020-7683(99)00078-5

2015, Imperfection-Insensitive Axially Loaded Thin Cylindrical Shells, Int. J. Solids Struct., 62, 39, 10.1016/j.ijsolstr.2014.12.030

1856, Elements of a Mathematical Theory of Elasticity, Philos. Trans. R. Soc. London, 146, 481, 10.1098/rstl.1856.0022

1947, Sur l'extension de la condition de legendre du calcul des variations aux intégrales multiples à plusieurs fonctions inconnues, Proc. Ned. Akad. Wet., 50, 1823

1962, Ondes plastique dans un milieu indéfini à trois dimensions, J. Mech., 1, 3

1966, Conditions de stabilité et postulat de drucker, Rheology and Solid Mechanics, 58

2012, Stability Criteria for Continuous and Discrete Elastic Composites and the Influence of Geometry on the Stability of a Negative-Stiffness Phase, Phys. Status Solidi B, 249, 1399, 10.1002/pssb.201084213

1956, General Theory of Elastic Stability, Q. Appl. Math., 14, 133, 10.1090/qam/79414

2012, Analytical Stability Conditions for Elastic Composite Materials With a Non-Positive-Definite Phase, Proc. R. Soc. A, 468, 2230, 10.1098/rspa.2011.0546

1985, On the Comparison Between Microscopic and Macroscopic Instability Mechanisms in a Class of Fiber-Reinforced Composites, ASME J. Appl. Mech., 52, 794, 10.1115/1.3169148

2009, Dynamic Stability Analysis of an Elastic Composite Material Having a Negative-Stiffness Phase, J. Mech. Phys. Solids, 57, 1122, 10.1016/j.jmps.2009.03.002

2014, Rigorous Bounds on the Effective Moduli of Composites and Inhomogeneous Bodies With Negative-Stiffness Phases, J. Mech. Phys. Solids, 71, 46, 10.1016/j.jmps.2014.06.010

1999, Viscoelastic Solids

2014, Material Instability-Induced Extreme Damping in Composites: A Computational Study, Int. J. Solids Struct., 51, 4101, 10.1016/j.ijsolstr.2014.07.028

1993, Materials With Structural Hierarchy, Nature, 361, 511, 10.1038/361511a0

2002, Computational Studies on High-Stiffness, High-Damping SiC–InSn Particulate Reinforced Composites, Int. J. Solids Struct., 39, 5799, 10.1016/S0020-7683(02)00404-3

2013, Analysis and Optimal Design of Layered Composites With High Stiffness and High Damping, Int. J. Solids Struct., 50, 1342, 10.1016/j.ijsolstr.2013.01.014

2014, Simultaneously High Stiffness and Damping in Nanoengineered Microtruss Composites, ACS Nano, 8, 3468, 10.1021/nn500284m

2004, Extreme Stiffness Systems Due to Negative Stiffness Elements, Am. J. Phys., 72, 40, 10.1119/1.1619140

2014, A Negative-Stiffness Phase in Elastic Composites Can Produce Stable Extreme Effective Dynamic But Not Static Stiffness, Philos. Mag., 94, 532, 10.1080/14786435.2013.857795

2000, Locally Resonant Sonic Materials, Science, 289, 1734, 10.1126/science.289.5485.1734

2003, Locally Resonant Sonic Materials, Physica B, 338, 201, 10.1016/S0921-4526(03)00487-3

2006, Ultrasonic Metamaterials With Negative Modulus, Nat. Mater., 5, 452, 10.1038/nmat1644

1992, Negative Stiffness-Mechanism Vibration Isolation System, Proc. SPIE, 1619

2007, Negative-Stiffness Vibration Isolation Improves Reliability of Nanoinstrumentation, Laser Focus World, 43, 107

2007, Design of Springs With Negative Stiffness to Improve Vehicle Driver Vibration Isolation, J. Sound Vib., 302, 865, 10.1016/j.jsv.2006.12.024

2016, Negative Stiffness Device for Seismic Protection of Structures: Shake Table Testing of a Seismically Isolated Structure, J. Struct. Eng., 142, 10.1061/(ASCE)ST.1943-541X.0001455

2006, Negative Incremental Bulk Modulus in Foams, Philos. Mag. Lett., 86, 651, 10.1080/09500830600957340

2004, Negative Stiffness of a Layer With Topologically Interlocked Elements, Scr. Mater., 50, 291, 10.1016/j.scriptamat.2003.09.053

2005, Transition Waves in Bistable Structures. I. Delocalization of Damage, J. Mech. Phys. Solids, 53, 383, 10.1016/j.jmps.2004.08.002

2012, Design, Fabrication, and Evaluation of Negative Stiffness Elements Using SLS, Rapid Prototyping J., 18, 194, 10.1108/13552541211218108

2013, A Nonlinear Negative Stiffness Metamaterial Unit Cell and Small-on-Large Multiscale Material Model, J. Appl. Phys., 114, 10.1063/1.4813233

2016, Hierarchical Design of Negative Stiffness Metamaterials Using a Bayesian Network Classifier, ASME J. Mech. Des., 138, 10.1115/1.4032774

Konarski, S. G., Hamilton, M. F., and Haberman, M. R., 2014, “Elastic Nonlinearities and Wave Distortion in Heterogeneous Materials Containing Constrained Negative Stiffness Inclusions,” Eighth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), Lyngby, Denmark, Aug. 25–28, pp. 130–132.10.1109/MetaMaterials.2014.6948620

2015, Nonaffine Response of Skeletal Muscles on the ‘Descending Limb’, Math. Mech. Solids, 20, 697, 10.1177/1081286514551504

2013, Muscle as a Metamaterial Operating Near a Critical Point, Phys. Rev. Lett., 110, 248103, 10.1103/PhysRevLett.110.248103

1999, Negative Stiffness of the Outer Hair Cell Lateral Wall, Biophys. J., 76, A60

1963, A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials, J. Mech. Phys. Solids, 11, 127, 10.1016/0022-5096(63)90060-7

2005, Extreme Viscoelastic Properties of Composites of Strongly Inhomogeneous Structures Due to Negative Stiffness Phases, Phys. Status Solidi B, 242, 645, 10.1002/pssb.200460383

2001, Extreme Thermal Expansion, Piezoelectricity, and Other Coupled Field Properties in Composites With a Negative Stiffness Phase, J. Appl. Phys., 90, 6458, 10.1063/1.1413947

2015, Anomalous Effective Viscoelastic, Thermoelastic, Dielectric, and Piezoelectric Properties of Negative-Stiffness Composites and Their Stability, Phys. Status Solidi B, 252, 1640, 10.1002/pssb.201552058

2015, Enhancement of Wave Damping Within Metamaterials Having Embedded Negative Stiffness Inclusions, Wave Motion, 58, 165, 10.1016/j.wavemoti.2015.05.005

2014, Improvement of Viscoelastic Damping by Using Manganese Bronze With Indium, Mech. Time-Depend. Mater., 18, 217, 10.1007/s11043-013-9223-3

2004, Deformation of Extreme Viscoelastic Metals and Composites, Mater. Sci. Eng. A, 370, 41, 10.1016/j.msea.2003.08.071

2009, Viscoelastic Material Design With Negative Stiffness Components Using Topology Optimization, Struct. Multidiscip. Optim., 38, 583, 10.1007/s00158-008-0308-6

2002, Dramatically Stiffer Elastic Composite Materials Due to a Negative Stiffness phase?, J. Mech. Phys. Solids, 50, 979, 10.1016/S0022-5096(01)00116-8

2007, Elastic Composite Materials Having a Negative Stiffness Phase Can Be Stable, Phys. Rev. Lett., 98, 10.1103/PhysRevLett.98.055502

2016, Tailored Heterogeneity Increases Overall Stability Regime of Composites Having a Negative-Stiffness Inclusion, J. Mech. Phys. Solids, 88, 123, 10.1016/j.jmps.2014.04.015

2014, Stability of Extreme Static and Dynamic Bulk Moduli of an Elastic Two-Phase Composite Due to a Non-Positive-Definite Phase, Phys. Status Solidi B, 251, 397, 10.1002/pssb.201384241

2004, Negative Stiffness-Induced Extreme Viscoelastic Mechanical Properties: Stability and Dynamics, Philos. Mag., 84, 3785, 10.1080/1478643042000282702

2005, Stability of Negative Stiffness Viscoelastic Systems, Q. Appl. Math., 63, 34, 10.1090/S0033-569X-04-00938-6

2006, Two-Dimensional Viscoelastic Discrete Triangular System With Negative-Stiffness Components, Philos. Mag. Lett., 86, 99, 10.1080/09500830600567719

2007, Influences of Negative Stiffness on a Two-Dimensional Hexagonal Lattice Cell, Philos. Mag., 87, 3671, 10.1080/14786430701395147

2007, Anomalies in Stiffness and Damping of a 2D Discrete Viscoelastic System Due to Negative Stiffness Components, Thin Solid Films, 515, 3171, 10.1016/j.tsf.2006.01.031

2014, Stable Extreme Damping in Viscoelastic Two-Phase Composites With Non-Positive-Definite Phases Close to the Loss of Stability, Mech. Res. Commun., 58, 36, 10.1016/j.mechrescom.2013.09.003

2004, Stable Extremely-High-Damping Discrete Viscoelastic Systems Due to Negative Stiffness Elements, Appl. Phys. Lett., 84, 4451, 10.1063/1.1759064

2010, Stability of Viscoelastic Continuum With Negative-Stiffness Inclusions in the Low-Frequency Range, Phys. Status Solidi B, 250, 2070, 10.1002/pssb.201370565

2017, Damage-Induced Mechanical Damping in Phase-Transforming Composites Materials, Int. J. Solids Struct., 113–114, 132, 10.1016/j.ijsolstr.2017.01.040

1951, Dynamic Stability of a Pendulum When Its Point of Suspension Vibrates, Sov. Phys. JETP, 21, 588

1951, Pendulum With a Vibrating Suspension, Usp. Fiz. Nauk, 44, 7, 10.3367/UFNr.0044.195105b.0007

2016, An Infinitely-Stiff Elastic System Via a Tuned Negative-Stiffness Component Stabilized by Rotation-Produced Gyroscopic Forces, Appl. Phys. Lett., 108, 261904, 10.1063/1.4954967

2012, Stable Singular or Negative Stiffness Systems in the Presence of Energy Flux, Philos. Mag. Lett., 92, 226, 10.1080/09500839.2012.657703

2004, Anelastic Instability in Composites With Negative Stiffness Inclusions, Philos. Mag. Lett., 84, 803, 10.1080/09500830500040981

2005, Internal Friction Study of a Composite With a Negative Stiffness Constituent, J. Mater. Res., 20, 2523, 10.1557/jmr.2005.0316

2006, Internal Friction Due to Negative Stiffness in the Indium-Thallium Martensitic Phase Transformation, Philos. Mag., 86, 4285, 10.1080/14786430500479738

2011, Giant Anelastic Responses in (BaZrO3-ZnO)-BaTiO3 Composite Materials, EPL, 93, 10.1209/0295-5075/93/66003

2011, Extreme Anelastic Responses in Zn80Al20 Matrix Composite Materials Containing BaTiO3 Inclusion, Scr. Mater., 65, 288, 10.1016/j.scriptamat.2011.04.032

2011, Viscoelastic Sigmoid Anomalies in BaZrO3-BaTiO3 Near Phase Transformations Due to Negative Stiffness Heterogeneity, J. Mater. Res., 26, 1446, 10.1557/jmr.2011.145

2014, Nanocharacterization of the Negative Stiffness of Ferroelectric Materials, Appl. Phys. Lett., 105, 10.1063/1.4894274

2016, Negative Stiffness in ZrW2O8 Inclusions as a Result of Thermal Stress, Appl. Phys. Lett., 109, 10.1063/1.4959094

2015, Broadband Electromechanical Spectroscopy: Characterizing the Dynamic Mechanical Response of Viscoelastic Materials Under Temperature and Electric Field Control in a Vacuum Environment, J. Mater. Sci., 50, 3656, 10.1007/s10853-015-8928-x

2007, Pattern Transformation Triggered by Deformation, Phys. Rev. Lett., 99, 084301, 10.1103/PhysRevLett.99.084301

2008, One-Step Nanoscale Assembly of Complex Structures Via Harnessing of an Elastic Instability, Nano Letters, 8, 1192, 10.1021/nl0801531

2007, Microscopic and Macroscopic Instabilities in Finitely Strained Porous Elastomers, J. Mech. Phys. Solids, 55, 900, 10.1016/j.jmps.2006.11.006

2006, Failure Surfaces for Finitely Strained Two-Phased Periodic Solids Under General In-Plane Loading, ASME J. Appl. Mech., 73, 505, 10.1115/1.2126695

2010, Negative Poisson's Ratio Behavior Induced by an Elastic Instability, Adv. Mater., 22, 361, 10.1002/adma.200901956

2013, 3D Soft Metamaterials With Negative Poisson's Ratio, Adv. Mater., 25, 5044, 10.1002/adma.201301986

2016, Harnessing Buckling to Design Architected Materials That Exhibit Effective Negative Swelling, Adv. Mater., 28, 10.1002/adma.201600812

2013, Buckling-Induced Reversible Symmetry Breaking and Amplification of Chirality Using Supported Cellular Structures, Adv. Mater., 25, 3380, 10.1002/adma.201300617

2016, Buckling Into Single-Handed Chiral Structures From pH-Sensitive Hydrogel Membranes, Extreme Mech. Lett., 7, 49, 10.1016/j.eml.2015.12.011

2014, Buckling, Symmetry Breaking, and Cavitation in Periodically Micro-Structured Hydrogel Membranes, Soft Matter, 10, 1392, 10.1039/C3SM51640G

2015, Soft Actuation of Structured Cylinders Through Auxetic Behavior, Adv. Eng. Mater., 17, 815, 10.1002/adem.201400433

2015, Buckling of Elastomeric Beams Enables Actuation of Soft Machines, Adv. Mater., 27, 6323, 10.1002/adma.201503188

2012, Switching Periodic Membranes Via Pattern Transformation and Shape Memory Effect, Soft Matter, 8, 10322, 10.1039/c2sm25816a

2012, Capillarity Induced Instability in Responsive Hydrogel Membranes With Periodic Hole Array, Soft Matter, 8, 8088, 10.1039/c2sm25393c

2008, Mechanically-Triggered Transformations of Phononic Band Gaps in Periodic Elastomeric Structures, Phys. Rev. B, 77, 052105, 10.1103/PhysRevB.77.052105

2014, Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves, Adv. Funct. Mater., 24, 4935, 10.1002/adfm.201400665

2015, Printing Mesoscale Architectures, MRS Bull., 40, 943, 10.1557/mrs.2015.235

1983, Incorporation of Lagrangian Multipliers Into an Algorithm for Finding Exact Natural Frequencies or Critical Buckling Loads, Int. J. Mech. Sci., 25, 579, 10.1016/0020-7403(83)90049-8

1993, Comparison of Microscopic and Macroscopic Instabilities in a Class of Two-Dimensional Periodic Composites, J. Mech. Phys. Solids, 41, 1533, 10.1016/0022-5096(93)90039-I

2008, Mechanics of Deformation-Triggered Pattern Transformations and Superelastic Behavior in Periodic Elastomeric Structures, J. Mech. Phys. Solids, 56, 2642, 10.1016/j.jmps.2008.03.006

2015, Buckling Analysis of Axially Loaded Corrugated Cylindrical Shells, AIAA, 10.2514/6.2015-1435

2013, Harnessing Instabilities for Design of Soft Reconfigurable Auxetic/Chiral Materials, Soft Matter, 9, 8198, 10.1039/c3sm51148k

2014, Complex Ordered Patterns in Mechanical Instability Induced Geometrically Frustrated Triangular Cellular Structures, Phys. Rev. Lett., 112, 098701, 10.1103/PhysRevLett.112.098701

2016, Mechanics of Instability-Induced Pattern Transformations in Elastomeric Porous Cylinders, J. Mech. Phy. Solids, 10.1016/j.jmps.2016.06.015

2009, Inhomogeneous Swelling of a Gel in Equilibrium With a Solvent and Mechanical Load, Int. J. Solids Struct., 46, 3282, 10.1016/j.ijsolstr.2009.04.022

2012, Magneto-Elastic Buckling of a Soft Cellular Solid, Soft Matter, 8, 6880, 10.1039/c2sm25965f

2011, Design and Fabrication of Photonic Microstructures by Holographic Lithography and Pattern Transformation

1948, Large Elastic Deformations of Isotropic Materials. II. Some Uniqueness Theorems for Pure, Homogeneous Deformation, Philos. Trans. R. Soc. London A, 240, 491, 10.1098/rsta.1948.0003

2016, Tensile Instability in a Thick Elastic Body, Phys. Rev. Lett., 117, 094301, 10.1103/PhysRevLett.117.094301

2008, Wave Propagation and Instabilities in Monolithic and Periodically Structured Elastomeric Materials Undergoing Large Deformations, Phys. Rev. B, 78, 184107, 10.1103/PhysRevB.78.184107

2015, Snapping Mechanical Metamaterials Under Tension, Adv. Mater., 27, 5931, 10.1002/adma.201502809

2016, Bistable Auxetic Mechanical Metamaterials Inspired by Ancient Geometric Motifs, Extreme Mech. Lett., 9, 291, 10.1016/j.eml.2016.09.001

2015, A Mechanically Driven Form of Kirigami as a Route to 3D Mesostructures in Micro/Nanomembranes, Proc. Natl. Acad. Sci. U.S.A., 112, 11757, 10.1073/pnas.1515602112

2017, Buckling-Induced Kirigami, Phys. Rev. Lett., 118, 084301, 10.1103/PhysRevLett.118.084301

2015, Kirigami-Based Stretchable Lithium-Ion Batteries, Sci. Rep., 5, 10988, 10.1038/srep10988

2015, A Kirigami Approach to Engineering Elasticity in Nanocomposites Through Patterned Defects, Nat. Mater., 14, 785, 10.1038/nmat4327

2015, Graphene Kirigami, Nature, 524, 204, 10.1038/nature14588

2015, Dynamic Kirigami Structures for Integrated Solar Tracking, Nat. Comm., 6, 8092, 10.1038/ncomms9092

2016, Paper-Based Triboelectric Nanogenerators Made of Stretchable Interlocking Kirigami Patterns, ACS Nano, 10, 4652, 10.1021/acsnano.6b00949

2016, Initial Rigid Response and Softening Transition of Highly Stretchable Kirigami Sheet Materials, Sci. Rep., 6, 24758, 10.1038/srep24758

2016, Controlled Mechanical Buckling for Origami-Inspired Construction of 3D Microstructures in Advanced Materials, Adv. Funct. Mater., 26, 10.1002/adfm.201504901

2016, Shape Morphing Kirigami Mechanical Metamaterials, Sci. Rep., 6, 31067, 10.1038/srep31067

2016, Combinatorial Design of Textured Mechanical Metamaterials, Nature, 535, 529, 10.1038/nature18960

2014, Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress and Future Outlook, Appl. Mech. Rev., 66, 040802, 10.1115/1.4026911

2004, Guiding and Bending of Acoustic Waves in Highly Confined Phononic Crystal Waveguides, Appl. Phys. Lett., 84, 4400, 10.1063/1.1757642

2000, Frequency Modulation in the Transmittivity of Wave Guides in Elastic-Wave Band-Gap Materials, Phys. Rev. Lett., 85, 4044, 10.1103/PhysRevLett.85.4044

2007, One Path to Acoustic Cloaking, New J. Phys., 9, 45, 10.1088/1367-2630/9/3/045

2006, Reduction of Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibers, Phys. Rev. Lett., 97, 133901, 10.1103/PhysRevLett.97.133901

2009, Quenching of Acoustic Bandgaps by Flow Noise, Appl. Phys. Lett., 94, 134104, 10.1063/1.3111797

2010, Periodic Shunted Arrays for the Control of Noise Radiation in an Enclosure, J. Sound Vib., 329, 3632, 10.1016/j.jsv.2010.04.003

2011, Design of Tunable Acoustic Metamaterials Through Periodic Arrays of Resonant Shunted Piezos, New J. Phys., 13, 113010, 10.1088/1367-2630/13/11/113010

2012, Vibration Control of Plates Through Hybrid Configurations of Periodic Piezoelectric Shunts, J. Intell. Mater. Syst. Struct., 23, 10.1177/1045389X12443014

1967, Introduction to Solid State Physics, Am. J. Phys., 35, 547, 10.1119/1.1974177

1983, An Experimental Investigation of Pass Bands and Stop Bands in Two Periodic Particulate Composites, Int. J. Solids Struct., 19, 393, 10.1016/0020-7683(83)90051-3

1995, Elastic Wave Band Gaps in 3-D Periodic Polymer Matrix Composites, Solid State Commun., 96, 285, 10.1016/0038-1098(95)00444-0

2003, Elastic Wave Band Gaps for Three-Dimensional Phononic Crystals With Two Structural Units, Phys. Lett. A, 313, 455, 10.1016/S0375-9601(03)00807-7

2003, 3D Phononic Crystals, Wave Scattering in Complex Media: From Theory to Applications, 282

2004, Focusing of Sound in a 3D Phononic Crystal, Phys. Rev. Lett., 93, 024301, 10.1103/PhysRevLett.93.024301

2006, Locally Resonant Phononic Crystals Made of Hollow Spheres or Cylinders, Phys. Rev. B, 73, 024302, 10.1103/PhysRevB.73.024302

2013, Effects of Geometric and Material Non-Linearities on the Tunable Response of Phononic Crystals, Phys. Rev. B, 88, 014304, 10.1103/PhysRevB.88.014304

2015, Honeycomb Phononic Crystals With Self-Similar Hierarchy, Phys. Rev. B, 92, 104304, 10.1103/PhysRevB.92.104304

2015, Three-Dimensional Adaptive Soft Phononic Crystals, J. Appl. Phys., 117, 244903, 10.1063/1.4923032

2017, Wave Control Through Soft Microstructural Curling: Bandgap Shifting, Reconfigurable Anisotropy and Switchable Chirality, Smart Mater. Struct., 10.1088/1361-665X/aa59ea

1946, Wave Propagation in Periodic Structures

2007, Effective Wave Propagation in a Prestressed Nonlinear Elastic Composite Bar, IMA J. Appl. Math., 72, 223, 10.1093/imamat/hxl033

2010, Pre-Stressed Viscoelastic Composites: Effective Incremental Moduli and Band-Gap Tuning, AIP Conf. Proc., 1281, 837, 10.1063/1.3498616

2016, Effect of Large Deformation Pre-Loads on the Wave Properties of Hexagonal Lattices, Smart Mater. Struct., 25, 054010, 10.1088/0964-1726/25/5/054010

1989, Failure Surfaces for Cellular Materials Under Multiaxial Loads—I: Modelling, Int. J. Solids Struct., 31, 635, 10.1016/S0020-7403(89)80001-3

1999, Cellular Solids: Structure and Properties

1999, Biaxial Crushing of Honeycombs: Part 1: Experiments, Int. J. Solids Struct., 36, 4367, 10.1016/S0020-7683(98)00224-8

1999, In-Plane Biaxial Crushing of Honeycombs: Part II: Analysis, Int. J. Solids Struct., 36, 4397, 10.1016/S0020-7683(98)00225-X

2001, In-Plane Biaxial Crush Response of Polycarbonate Honeycombs, J. Eng. Mech., 127, 180, 10.1061/(ASCE)0733-9399(2001)127:2(180)

2002, Microscopic Symmetric Bifurcation Condition of Cellular Solids Based on a Homogenization Theory of Finite Deformation, J. Mech. Phys. Solids, 50, 1125, 10.1016/S0022-5096(01)00106-5

2016, Post-Bifurcation and Stability of a Finitely Strained Hexagonal Honeycomb Subjected to Equi-Biaxial In-Plane Loading, Int. J. Solids Struct., 88–89, 296, 10.1016/j.ijsolstr.2016.02.016

2017, Wave Propagation in Elastic and Damped Structures With Stabilized Negative-Stiffness Components, J. Mech. Phys. Solids, 106, 10.1016/j.jmps.2017.04.007

2000, Mechanics of a Discrete Chain With Bi-Stable Elements, J. Mech. Phys. Solids, 48, 1, 10.1016/S0022-5096(99)00006-X

2010, Still States of Bistable Lattices, Compatibility, and Phase Transition, Continuum Mech. Thermodyn., 22, 421, 10.1007/s00161-010-0161-x

2015, Selective Buckling Via States of Self-Stress in Topological Metamaterials, Proc. Natl. Acad. Sci., 112, 7639, 10.1073/pnas.1502939112

2015, Multistable Architected Materials for Trapping Elastic Strain Energy, Adv. Mater., 27, 4296, 10.1002/adma.201501708

2015, Phase Transforming Cellular Materials, Extreme Mech. Lett., 4, 52, 10.1016/j.eml.2015.08.001

2011, Multiscale Mass-Spring Models of Carbon Nanotube Foams, J. Mech. Phys. Solids, 59, 89, 10.1016/j.jmps.2010.09.004

2015, Wave Propagation in Multistable Magneto-Elastic Lattices, Int. J. Solids Struct., 56–57, 78, 10.1016/j.ijsolstr.2014.12.003

2013, Nonlinear Dynamics of a Bistable Piezoelectric-Composite Energy Harvester for Broadband Application, Eur. Phys. J. Spec. Top., 222, 1553, 10.1140/epjst/e2013-01944-6

2014, Dynamic Stabilization of a Bistable Suspension System Attached to a Flexible Host Structure for Operational Safety Enhancement, J. Sound Vib., 333, 6651, 10.1016/j.jsv.2014.07.033

2013, Concise and High-Fidelity Predictive Criteria for Maximizing Performance and Robustness of Bistable Energy Harvesters, Appl. Phys. Lett., 102, 053903, 10.1063/1.4790381

2014, Energy Harvester Synthesis Via Coupled Linear-Bistable System With Multistable Dynamics, ASME J. Appl. Mech., 81, 061005, 10.1115/1.4026555

2014, A Disturbance Cancellation Perspective on Vibration Control Using a Bistable Snap-Through Attachment, ASME J. Vib. Acoust., 136, 031006, 10.1115/1.4026673

1965, The Dynamic Stability of Elastic Systems. V. V. Bolotin. Translated from the Russian edition (Moscow, 1965) by V. I. Weingarten, L. B. Greszcuzuk, K. N. Trirogoff, and K. D. Gallegos. Holden-Day, San Francisco, CA, 1964. pp. xii + 451, Science, 148, 627, 10.1126/science.148.3670.627-a

2010, Twinkling Phenomena in Snap-Through Oscillators, ASME J. Vib. Acoust., 132, 061013, 10.1115/1.4000764

2014, Dynamics of Periodic Mechanical Structures Containing Bistable Elastic Elements: From Elastic to Solitary Wave Propagation, Phys. Rev. E, 90, 10.1103/PhysRevE.90.023204

1938, On Theory of Plastic Deformation and Twinning, Phys. Z. Sowjetunion, 13

1998, Nonlinear Dynamics of the Frenkel Kontorova Model, Phys. Rep., 306, 1, 10.1016/S0370-1573(98)00029-5

1928, Ein gedankenmodell zur kinetischen theorie der festen krper, Z. Angew. Math. Mech., 8, 85, 10.1002/zamm.19280080202

2013, Structures Undergoing Discrete Phase Transformation, J. Mech. Phys. Solids, 61, 94, 10.1016/j.jmps.2012.08.009

1862, Théorie de la déformation des surfaces, J. Ec. Imp. Polytech., 19, 1

1969, A Nonlinear Klein-Gordon Equation, Am. J. Phys., 37, 52, 10.1119/1.1975404

1965, Studies of Nonlinear Problems (Los Alamos Report LA-1940), The Collected Papers of Enrico Fermi

1877, Essai sur la theorie des eaux courantes, memoires presentes par divers savants, Acad. Sci. Inst. Nat. France, XXIII, 1

1895, XLI. On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves, Philos. Mag., 39, 422, 10.1080/14786449508620739

1995, Analysis of Microstructures in Cu-14.0%Al-3.9%Ni by Energy Minimization, J. Phys. IV, 5, C8-143, 10.1051/jp4:1995817

1962, Ferroelectric Crystals

2005, A Computational Model of Ferroelectric Domains. Part I: Model Formulation and Domain Switching, Acta Mater., 53, 185, 10.1016/j.actamat.2004.09.016

2007, Continuum Thermodynamics of Ferroelectric Domain Evolution: Theory, Finite Element Implementation, and Application to Domain Wall Pinning, J. Mech. Phys. Solids, 55, 280, 10.1016/j.jmps.2006.07.006

2002, Phase Transition Dynamics

2002, Theory of Phase-Ordering Kinetics, Adv. Phys., 51, 481, 10.1080/00018730110117433

2015, Shape Memory Alloys: Towards Practical Actuators, Nat. Mater., 14, 760, 10.1038/nmat4362

2016, The Evolution of Multiferroics, Nat. Rev. Mater., 16046, 10.1038/natrevmats.2016.46

2016, Universal Energy Transport Law for Dissipative and Diffusive Phase Transitions, Phys. Rev. B, 93, 104109, 10.1103/PhysRevB.93.104109

2016, Unidirectional Transition Waves in Bistable Lattices, Phys. Rev. Lett., 116, 244501, 10.1103/PhysRevLett.116.244501

1979, A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening, Acta Metall., 27, 1085, 10.1016/0001-6160(79)90196-2

2005, A Computational Model of Ferroelectric Domains. Part II: Grain Boundaries and Defect Pinning, Acta Mater., 53, 199, 10.1016/j.actamat.2004.09.015

1979, A Theory of Intrinsic Coercivity in Narrow Magnetic Domain Wall Materials, J. Phys. C, 12, 3811, 10.1088/0022-3719/12/18/027

1982, The Solitonic Mechanism for Proton Transport in a Hydrogen Bonded Chain, J. Chem. Phys., 77, 1904, 10.1063/1.444043

1989, Statistical Mechanics of a Nonlinear Model for DNA Denaturation, Phys. Rev. Lett., 62, 2755, 10.1103/PhysRevLett.62.2755

2014, Multiscale Mass-Spring Model for High-Rate Compression of Vertically Aligned Carbon Nanotube Foams, ASME J. Appl. Mech., 81, 121006, 10.1115/1.4028785

1968, Current Voltage Characteristics of Josephson Junctions, Appl. Phys. Lett., 12, 277, 10.1063/1.1651991

1998, Spark-to-Wave Transition: Saltatory Transmission of Calcium Waves in Cardiac Myocytes, Biophys. Chem., 72, 87, 10.1016/S0301-4622(98)00125-2

1975, The Electrophysics of a Nerve Fiber, Rev. Mod. Phys., 47, 487, 10.1103/RevModPhys.47.487

1991, Solitons in a Surface Reaction, Phys. Rev. Lett., 66, 3083, 10.1103/PhysRevLett.66.3083

1999, Dissipative Lattice Model With Exact Traveling Discrete Kink-Soliton Solutions: Discrete Breather Generation and Reaction Diffusion Regime, Phys. Rev. E, 60, 7484, 10.1103/PhysRevE.60.7484

2001, Dynamics of Chains With Non-Monotone Stress Strain Relations. II. Nonlinear Waves and Waves of Phase Transition, J. Mech. Phys. Solids, 49, 149, 10.1016/S0022-5096(00)00026-0

2005, Kinetics of Martensitic Phase Transitions: Lattice model, SIAM J. Appl. Math., 66, 533, 10.1137/040616942

1990, Kinks in the Frenkel-Kontorova Model With Long-Range Interparticle Interactions, Phys. Rev. B, 41, 7118, 10.1103/PhysRevB.41.7118

1991, Kinetic Relations and the Propagation of Phase Boundaries in Solids, Arch. Ration. Mech. Anal., 114, 119, 10.1007/BF00375400

1984, Soliton Dynamics in New Models With Parametrized Periodic Double-Well and Asymmetric Substrate Potentials, Phys. Rev. B, 29, 3153, 10.1103/PhysRevB.29.3153

2013, Application of a Bi-Stable Chain Model for the Analysis of Jerky Twin Boundary Motion in Ni–Mn–Ga, Appl. Phys. Lett., 102, 011912, 10.1063/1.4773995

2017, Band Gap Transmission in Periodic Bistable Mechanical Systems, J. Sound Vib., 388, 315, 10.1016/j.jsv.2016.10.041

2014, Nonlinear Conduction Via Solitons in a Topological Mechanical Insulator, Proc. Natl. Acad. Sci., 111, 13004, 10.1073/pnas.1405969111

2017, Atomimetic Mechanical Structures With Nonlinear Topological Domain Evolution Kinetics, Adv. Mater., 29, 10.1002/adma.201605800

2016, Bistable Mechanisms for Space Applications, PLoS One, 11, e0168218, 10.1371/journal.pone.0168218

2015, Rate Dependent Response of Nanoscale Structures Having a Multiwell Energy Landscape, Phys. Rev. Lett., 114, 095504, 10.1103/PhysRevLett.114.095504

2005, Protective Structures With Waiting Links and Their Damage Evolution, Multibody Syst. Dyn., 13, 53, 10.1007/s11044-005-5166-z

1986, Overview No. 48, Acta Metall., 34, 761, 10.1016/0001-6160(86)90052-0