Exploiting MODTRAN radiation transport for atmospheric correction: The FLAASH algorithm

A. Berk1, S.M. Adler-Golden1, A.J. Ratkowski2, G.W. Felde2, G.P. Anderson2, M.L. Hoke2, T. Cooley2, J.H. Chetwynd2, J.A. Gardner2,3, M.W. Matthew1, L.S. Bernstein4, P.K. Acharya1, D. Miller5, P. Lewis6
1Spectral Sciences Inc, Burlington, MA, USA
2Air Force Research Laboratory, Space Vehicles Directorate, Hanscom AFB, USA
3University of Arizona, Tucson, AZ USA
4Spectral Sciences Inc, Burlington, MA
5SITAC, Fairfax, VA, USA
6CNIMA, Reston, VA, USA

Tóm tắt

Terrain categorization and target detection algorithms applied to hyperspectral imagery (HSI) typically operate on the measured reflectance (of sun and sky illumination) by an object or scene. Since the reflectance is a non-dimensional ratio, the reflectance by an object is nominally not affected by variations in lighting conditions. Atmospheric correction (referred to as atmospheric compensation, characterization, etc.) algorithms (ACAs) are used in applications of remotely sensed HSI data to correct for the effects of atmospheric propagation on measurements acquired by air and space-borne systems. The fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) algorithm is an ACA created for HSI applications in the visible through shortwave infrared (Vis-SWIR) spectral regime. FLAASH derives its 'physics-based' mathematics from MODTRAN4.

Từ khóa

#Reflectivity #Atmospheric measurements #Object detection #Hyperspectral sensors #Hyperspectral imaging #Sun #Lighting #Layout #Optical propagation #Spectral analysis

Tài liệu tham khảo

10.1111/j.2153-3490.1970.tb01522.x gao, 1998, Removal of Thin Cirrus Path Radiances in the 0. 4-1. 0 urn Spectral Region Using the 1. 375-um Strong Water Vapor Absorption Channel, Summaries of the Seventh JPL Airborne Earth Science Workshop, 1, 121 10.1109/36.628795 philipona, 2001, Atmospheric longwave irradiance uncertainty: Pyrgeome- ters compared to an absolute sky-scanning radiometer, atmospheric emitted radiance interferometer and radiative transfer model calculations, J Geophys Res, 106, 2812928142, 10.1029/2000JD000196 10.1029/1998JD200032 borel, 1999, Practical atmospheric correction algorithms for a multi-spectral sensor from the visible through the thermal spectral regions, SPIE '99 Paper Conf 3717-19 adler-golden, 1998, A modtran4 atmospheric correction package for hyperspectral data retrievals and simulations, Summaries of the Seventh JPL Airborne Earth Science Workshop, 1, 9 matthew, 2000, Status of atmospheric correction using a modtran4-based algorithm, Proceedings of SPIE, 4049, 207 staenz, 1996, Surface reflectance retrieval from aviris data using a six- dimensional look-up table, Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, 1, 223 10.1109/36.581987 10.1016/S0022-4073(99)00223-X boardman, 1998, Post-atrem polishing of avtris apparent reflectance data using effort: A lesson in accuracy versus precision, Summaries of the Seventh JPL Airborne Earth Science Workshop, 1, 53 10.1364/AO.27.002502 10.1364/AO.26.001272 10.1016/0169-8095(89)90020-3 10.1016/S0022-4073(98)00078-8 10.1029/90JD01945 bernstein, 1996, Addition of a correlated-capability to modtran, IRIS Targets Backgrounds and Discrimination Conference, 11, 239 10.1117/12.211917 clough, 1988, FASCODE3 spectral simulation, Proceedings of the International Radiation Symposium Lenoble and Geleyn 10.1109/36.124212 green, 1996, Characterization and compensation of the atmosphere for inversion of aviris calibrated radiance to apparent surface reflectance, Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, 1, 135 0 gao, 1996, Atmosphere Removal Program (Atrem) Version 2 0 Users Guide 10.1364/AO.18.002329 berk, 1996, Modtran cloud and multiple scattering upgrades with application to aviris, Summaries of the Sixth Annua! JPL Airborne Earth Science Workshop, 1, 1 berk, 1989, MODTRAN A Moderate Resolution Model for LOWTRAN-7 10.1364/AO.35.006028 10.1109/36.602541 green, 1998, Inflight validation of aviris calibration in 1996 and 1997, Summaries of the Seventh Annual JPL Airborne Earth Science Workshop, 1, 193 richter, 1996, Atmospheric correction of dais hyper- spectral image data, SPIE AEROSENSE '96 Conference, 2758 anderson, 2000, Modtran4: Radiative transfer modeling for remote sensing, Proceedings of SPIE, 4049, 176, 10.1117/12.410338 berk, 2000, Reformulation of the modtran band model for higher spectral resolution, Proceedings of SPIE, 4049, 190, 10.1117/12.410340