Explicit Verlet time-integration for a Nitsche-based approximation of elastodynamic contact problems

Springer Science and Business Media LLC - Tập 5 - Trang 1-38 - 2018
Franz Chouly1, Yves Renard2
1 IMB UMR5584, Université Bourgogne Franche-Comté, Dijon, France
2ICJ UMR5208, LaMCoS UMR5259, Université de Lyon, INSA-Lyon, Villeurbanne, France

Tóm tắt

The aim of the present paper is to study theoretically and numerically the Verlet scheme for the explicit time-integration of elastodynamic problems with a contact condition approximated by Nitsche’s method. This is a continuation of papers (Chouly et al. ESAIM Math Model Numer Anal 49(2), 481–502, 2015; Chouly et al. ESAIM Math Model Numer Anal 49(2), 503–528, 2015) where some implicit schemes (theta-scheme, Newmark and a new hybrid scheme) were proposed and proved to be well-posed and stable under appropriate conditions. A theoretical study of stability is carried out and then illustrated with both numerical experiments and numerical comparison to other existing discretizations of contact problems.

Tài liệu tham khảo

Cirak F, West M. Decomposition contact response (DCR) for explicit finite element dynamics. Int J Numer Methods Eng. 2005;64(8):1078–110. Ryckman RA, Lew AJ. An explicit asynchronous contact algorithm for elastic body-rigid wall interaction. Int J Numer Methods Eng. 2012;89(7):869–96. Wolff S, Bucher C. Asynchronous collision integrators: explicit treatment of unilateral contact with friction and nodal restraints. Int J Numer Methods Eng. 2013;95(7):562–86. Stewart JR, Gullerud AS, Heinstein MW. Solution verification for explicit transient dynamics problems in the presence of hourglass and contact forces. Comput Methods Appl Mech Eng. 2006;195(13–16):1499–516. Taylor LM, Flanagan DP. PRONTO3D: a three-dimensionnal transient solid dynamics program. Albuquerque: Sandia National Laboratories; 1989. p. 87185. Heinstein MW, Mello FJ, Attaway SW, Laursen TA. Contact-impact modeling in explicit transient dynamics. Comput Methods Appl Mech Eng. 2000;187:621–40. Moreau JJ. Unilateral contact and dry friction in finite freedom dynamics. Vienna: Springer; 1988. p. 1–82. Moreau JJ. Numerical aspects of the sweeping process. Comput Methods Appl Mech Eng. 1999;177:329–49. Vola D, Raous M, Martins JAC. Friction and instability of steady sliding: squeal of a rubber/glass contact. Int J Numer Methods Eng. 1999;46(10):1699–720. Newmark NM. A method of computation for structural dynamics. J Eng Mech Div. 1959;85(3):67–94. Khenous HB, Laborde P, Renard Y. Mass redistribution method for finite element contact problems in elastodynamics. Eur J Mech. 2008;27(5):918–32. Paoli L, Schatzman M. A numerical scheme for impact problems. I. The one-dimensional case. SIAM J Numer Anal. 2002;40(2):702–33. Paoli L, Schatzman M. A numerical scheme for impact problems. II. The multidimensional case. SIAM J Numer Anal. 2002;40(2):734–68. Schindler T, Acary V. Timestepping schemes for nonsmooth dynamics based on discontinuous Galerkin methods: definition and outlook. Math Comput Simulation. 2014;95:180–99. Dabaghi F, Petrov A, Pousin J, Renard Y. A robust finite element redistribution approach for elastodynamic contact problems. Appl Numer Math. 2016;103:48–71. Lebeau G, Schatzman M. A wave problem in a half-space with a unilateral constraint at the boundary. J Differ Equ. 1984;53(3):309–61. Hager C, Hüeber S, Wohlmuth BI. A stable energy-conserving approach for frictional contact problems based on quadrature formulas. Int J Numer Methods Eng. 2008;5(27):918–32. Renard Y. The singular dynamic method for constrained second order hyperbolic equations: application to dynamic contact problems. J Comput Appl Math. 2010;234(3):906–23. Doyen D, Ern A, Piperno S. Quasi-explicit time-integration schemes for dynamic fracture with set-valued cohesive zone models. Comput Mech. 2013;52(2):401–16. Belhytschko T, Neal MO. Contact-impact by the pinball algorithm with penaly and lagrangian methods. Internat J Numer Methods Eng. 1991;31:547–72. Kikuchi N, Oden JT. Contact problems in elasticity: a study of variational inequalities and finite element methods. In: SIAM studies in applied mathematics. vol. 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia; 1988. p. 495. Doyen D, Ern A, Piperno S. Time-integration schemes for the finite element dynamic Signorini problem. SIAM J Sci Comput. 2011;33(1):223–49. Nitsche J. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 1971;36:9–15. Stenberg R. On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math. 1995;63(1–3):139–48. Chouly F, Hild P. A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J Numer Anal. 2013;51(2):1295–307. Chouly F, Hild P, Renard Y. Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments. Math Comp. 2015;84(293):1089–112. Chouly F, Fabre M, Hild P, Mlika R, Pousin J, Renard Y. An overview of recent results on Nitsche’s method for contact problems. Lect Notes Comput Sci Eng. 2018;121:93–141. Chouly F, Hild P, Renard Y. A Nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes. ESAIM Math Model Numer Anal. 2015;49(2):481–502. Chouly F, Hild P, Renard Y. A Nitsche finite element method for dynamic contact: 2. Stability of the schemes and numerical experiments. ESAIM Math Model Numer Anal. 2015;49(2):503–28. Hauret P, Le Tallec P. Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput Methods Appl Mech Eng. 2006;195(37–40):4890–916. Hairer E, Lubich C, Wanner G. Geometric numerical integration, 2nd edn. Springer Series in computational mathematics. Berlin : Springer; 2006. p. 31 Adams R-A. Sobolev spaces. Pure and applied mathematics, vol. 65. New York: Academic Press; 1975. Schatzman M. A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle. J Math Anal Appl. 1980;73(1):138–91. Schatzman M. Un problème hyperbolique du 2ème ordre avec contrainte unilatérale: la corde vibrante avec obstacle ponctuel. J Differ Equ. 1980;36(2):295–334. Kim JU. A boundary thin obstacle problem for a wave equation. Comm Partial Differ Equ. 1989;14(8–9):1011–26. Dabaghi F, Petrov A, Pousin J, Renard Y. Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary. M2AN Math Model Numer Anal. 2014;48:1147–69. Ahn J, Stewart DE. Existence of solutions for a class of impact problems without viscosity. SIAM J Math Anal. 2006;38(1):37–63. Pozzolini C, Renard Y, Salaün M. Vibro-impact of a plate on rigid obstacles: existence theorem, convergence of a scheme and numerical simulations. IMA J Numer Anal. 2013;33(1):261–94. Eck C, Jaru\(\check{s}\)ek J, Krbec M. Unilateral contact problems. Pure and applied mathematics (Boca Raton). Boca Raton : Chapman & Hall/CRC; 2005. vol. 270, p. 398. Laursen TA, Chawla V. Design of energy conserving algorithms for frictionless dynamic contact problems. Int J Numer Methods Eng. 1997;40(5):863–86. Armero F, Petőcz E. Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput Methods Appl Mech Eng. 1998;158(3–4):269–300. Ciarlet P-G. The finite element method for elliptic problems. Handbook of numerical analysis. Ciarlet PG, Lions JI. vol. II. Amsterdam : North-Holland Publishing Co.; 1991. Thomée V. Galerkin finite element methods for parabolic problems. Springer Series in computational mathematics. vol. 25. Berlin: Springer; 1997. p. 302. Alart P, Curnier A. A generalized Newton method for contact problems with friction. J Mech Theor Appl. 1988;7(1):67–82. Chouly F. An adaptation of Nitsche’s method to the Tresca friction problem. J Math Anal Appl. 2014;411(1):329–39. Cohen G, Pernet S. Finite element and discontinuous Galerkin methods for transient wave equations. Scientific Computation. Dordrecht: Springer; 2017. p. 381 Ern A, Guermond J-L. Theory and practice of finite elements. Applied mathematical sciences, vol. 159. New York: Springer; 2004. Brenner S-C, Scott L-R. The mathematical theory of finite element methods. Texts in applied mathematics, vol. 15. New York: Springer; 2007. Paoli L, Schatzman M. Schéma numérique pour un modèle de vibrations avec contraintes unilatérales et perte d’énergie aux impacts, en dimension finie. C R Acad Sci Paris Sér I Math. 1993;317(2):211–5. Paoli L, Schatzman M. Approximation et existence en vibro-impact. C R Acad Sci Paris. 1999;317:1103–7. Paoli L, Schatzman M. Numerical simulation of the dynamics of an impacting bar. Comput Methods Appl Mech Eng. 2007;196:2839–51. Dabaghi F, Krejči P, Petrov A, Pousin J, Renard Y. A weighted finite element mass redistribution method for dynamic contact problems. J Comp Appl Math. 2019;345:338–56. Wohlmuth BI. Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer. 2011;20:569–734. Doyen D, Ern A. Convergence of a space semi-discrete modified mass method for the dynamic Signorini problem. Commun Math Sci. 2009;7(4):1063–72. Doyen D, Ern A. Analysis of the modified mass method for the dynamic Signorini problem with Coulomb friction. SIAM J Numer Anal. 2011;49(5):2039–56. Chouly F, Hild P. On convergence of the penalty method for unilateral contact problems. Appl Numer Math. 2013;65:27–40. Burman E, Fernández MA, Frei S. A Nitsche-based formulation for fluid-structure interactions with contact. Research Report RR-9172, Inria (2018). hal-01784841. https://hal.inria.fr/hal-01784841 Marazzato F, Ern A, Mariotti C, Monasse L. An explicit energy-momentum conserving time-integration scheme for Hamiltonian dynamics. hal-01661608 (2017). https://hal-enpc.archives-ouvertes.fr/hal-01661608