Experimental studies in quantum cryptography

Pleiades Publishing Ltd - Tập 40 - Trang 245-253 - 2011
V. L. Kurochkin1,2, A. V. Zverev1, Yu. V. Kurochkin3, I. I. Ryabtsev1,2, I. G. Neizvestny1
1Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Moscow, Russia
2Novosibirsk State University, Novosibirsk, Russia
3Moscow Physicotechnical Institute, Moscow, Russia

Tóm tắt

A short survey on experimental works in quantum cryptography is presented. We describe experimental setups that were designed in the Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, for quantum key distribution through an air space and along a fiber-optic communication line. The results of the study of quantum efficiency parameters, probability of afterpulse appearance, and noise levels for different operation modes of InGaAs-InP avalanche photodiodes are presented.

Tài liệu tham khảo

Shannon, C.E., Communication Theory of Secret Systems, Bell Syst. Tech. Jour., 1949, vol. 28, pp. 656–715. Bennet, C.H., Quantum Cryptography Using Any Two Nonorthogonal States, Phys. Rev. Lett., 1992, vol. 68, pp. 3121–3124. Wooters, W.K. and Zurek, W.H., A Single Quantum Cannot Be Cloned, Nature, 1982, vol. 299, pp. 802–803. Bennet, C.H. and Brassard, G., Quantum Cryptography: Public Key Distribution and Coin Tossing, Proc. of IEEE Int. Conf. on Comput. Sys. and Sign. Proces., Bangalore, 1984, pp. 175–179. Bennet, C.H., Bessette, F., Brassard, G., et al., Experimental Quantum Cryptography, J. Cryptology, 1992, vol. 5, pp. 3–28. Gisin, N., Ribordy, G., Title, W., et al., Quantum Cryptography, Rev. Mod. Phys., 2002, vol. 74, pp. 145–175. Scarani, V., Pasquinucci, H., Cerf, N., et al., The Security of Practical Quantum Key Distribution, Rev. Mod. Phys., 2009, vol. 81, p. 1301. Kurtsiefer, C., Zarda, P., Halder, M., et al., Quantum Cryptography: A Step Towards Global Key Distribution, Nature, 2002, vol. 419, p. 450. Rarity, J.G., Tapster, P.M., Gorman, P.M., and Knight, P., Ground to Satellite Secure Key Exchange Using Quantum Cryptography, New J. Phys., 2002, vol. 4, pp. 82.1–82.21. Ursin, R., Jennewein, T., Koer, J., et al., Space-QUEST: Experiments with Quantum Entanglement in Space, 2008, arXiv: quant-ph/0806.0945. Ghioni, M., Cova, S., Zappa, F., et al., Compact Active Quenching Circuit for Fast Photon Counting with Avalanche Photodiodes, Rev. Sci. Instrum., 1996, vol. 67, no. 10, pp. 3440–3448. Cova, S., Ghioni, M., and Laciata, A., Avalanche Photodiodes and Quenching Circuits for Single-Photon Detection. Appl. Opt., 1996, vol. 35, no. 12, pp. 1956–1976. Kurochkin, V.L. and Ovchar, V.K., Free Space Quantum Key Distribution System with Light Rate Counter Single Photon Detectors. Abstract of EQIS’ Conf., Tokyo, 2004, pp. 116–117. Rarity, J.G., Tapster, P.R., and Gorman, P.M., Secure Free-Space Key Exchange to 1.9 km and Beyond, J. Mod. Opt., 2001, vol. 48, no. 13, pp. 1887–1901. Hughes, R.J., Nordholt, J.E., Derkacs, D., and Peterson, C.G., Practical Free-Space Quantum Key Distribution Over 10 km in Daylight and at Night, New. J. Phys., 2002, vol. 4, pp. 43.1–43.14. Ekert, A.K., Quantum Cryptography Based on Bell’s Theorem, Phys. Rev. Lett., 1991, vol. 67, no. 6, pp. 661–663. Peng, C., Yang, T., Bao, X., et al., Experimental Free-Space Distribution of Entangled Photon Pairs Over 13 km: Towards Satellite-Based Global Quantum Communication, Phys. Rev. Lett., 2005, vol. 94, no. 15, p. 150501. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., et al., Entanglement Based Quantum Communication Over 144 km, Nature Physics, 2007, vol. 3, no. 7, pp. 481–486. Villoresi, P., Jennewein, T., Tamburini, F., et al., Experimental Verification of the Feasibility of a Quantum Channel between Space and Earth, New J. Phys., 2008, vol. 10, no. 3, p. 033038. Miao Er-long, Han Zheng-fu, Gong Shun-sheng, et al., Background Noise of Satellite-to-Ground Quantum Key Distribution. New J. Phys., 2005. V. 7. no. 1. p. 215. Kurochkin, V.L., Ryabtsev, I.I., and Neizvestnyi, I.G., Quantum Key Generation Based on Coding of Polarization States of Photons, Opt. Spektrosk., 2004, vol. 96, no. 5, pp. 772–776 [Opt. Spectrosc. (Engl. Transl.), vol. 96, no. 5, p. 703–706]. Kurochkin, V.L., Ryabtsev, I.I., and Neizvestnyi, I.G., Quantum Cryptography and Quantum-Key Distribution with Single Photons, Mikroelektronika, 2006, vol. 35, no. 1, pp. 41–47 [Russ. Microelectron. (Engl. Transl.), vol. 35, no. 1, p. 31–36]. Muller, A., Breguet, J., and Gisin, N., Experimental Demonstration of Quantum Cryptography Using Polarized Photons in Optical Fibre Over More Than 1 km, Europhys. Lett., 1993, vol. 23, no. 6, pp. 383–388. Ribordy, G., Gautier, J.D., Zbinden, H., and Gisin, N., Performance of InGaAs/InP Avalanche Photodiodes as Gated-Mode Photon Counters, Appl. Opt., 1998, vol. 37, no. 12, pp. 2272–2277. Trifonov, A., Subacius, D., Berzanskis, A., and Zavriev, A., Single Photon Counting at Telecom Wave-length and Quantum Key Distribution. J. Mod. Opt., 2004, vol. 51, nos. 9–10, pp. 1399–1415. Thew, R.T., Stucki, D., Gautier, J.-D., Zbinden, H., and Rochas, A., Free-Running InGaAs/InP Avalanche Photodiode with Active Quenching for Single Photon Counting at Telecom Wavelengths. Appl. Phys. Lett., 2007, vol. 91, no. 20, p. 201114. Rochas, A. Guillaume-Gentil, C., and Gautier, J.-D., et al., ASIC for High Speed Gating and Free Running Operation of SPADs, Proc. of SPIE, 2007, vol. 6583, p. 65830F. Zhang, J., Thew, R., Gautier, J.-D., Gisin, N., and Zbinden, H., Comprehensive Characterization of InGaAs-InP Avalanche Photodiodes at 1550 nm with an Active Quenching ASIC, IEEE J. Quantum Electron., 2009, vol. 45, no. 7, pp. 792–799. Stucki, D., Ribordy, G., Stefanov, A., et al., Photon Counting for Quantum Key Distribution with Peltier Cooled InGaAs/InP APD’s, J. Mod. Opt., 2001, vol. 48, no. 13, pp. 1967–1981. Kurochkin, V.L., Zverev, A.V., Kurochkin, Yu.V., Ryabtsev, I.I., and Neizvestnyi, I.G., Using Single-Photon Detectors for Quantum Key Distribution in an Experimental Fiber-Optic Communication System, Avtometriya, 2009, vol. 45, no. 4, pp. 110–119 [Optoelectr., Instrum. Data Process., (Engl. Transl.), vol. 45, no. 4, p. 374]. Muller, A., Zbinden, H., and Gisin, N., Quantum Cryptography Over 23 km in Installed Under-Lake Telecom Fibre, Europhys. Lett., 1996, vol. 33, no. 4, pp. 335–339. Wu, G., Chen, J., Li, Yao, and Zeng, H., Stable Polarization-Encoded Quantum Key Distribution in Fiber, 2006, arXiv: quant-ph/0606108. Peng Cheng-Zhi, Zhang Jun, Yang Dong, et al., Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding, Phys. Rev. Lett, 2007, vol. 98, no. 1, p. 010505. Mazurenko, Y., Giust, R., and Goedgebuer, J.P., Spectral Coding for Secure Optical Communications Using Refractive Index Dispersion, Opt. Commun., 1997, vol. 133, pp. 87–92. Merolla, J-M., Mazurenko, Y., Goedgebuer, J.P., and Rhodes, W.T., Single-Photon Interference in Sidebands of Phase-Modulated Light for Quantum Cryptography, Phys. Rev. Lett., 1999, vol. 82, pp. 1656–1659. Debuisschert, T. and Boucher, W., Time Coding Protocols for Quantum Key Distribution, Phys. Rev. A, 2004, vol. 70, p. 042306. Boucher, W. and Debuisschert, T., Experimental Implementation of Time-Coding Quantum Key Distribution, Phys. Rev. A, 2005, vol. 72, no. 6, p. 062325. Kosaka, H., Tomita, A., Nambu, Y., et al., Single-Photon Interference Experiment Over 100 km for Quantum Cryptography System Using Balanced Gated-Mode Photon Detector, Electron. Lett., 2003, vol. 39, no. 16, pp. 1199–1201. Kimura, T., Nambu, Y., Hatanaka, T., et al., Single-Photon Interference Over 150 km Transmission Using Silica-Based Integrated-Optic Interferometers for Quantum Cryptography, 2004, arXiv: quant-ph/0403104. Takesue, H., Nam, S.W., Zhang, Q., et al., Quantum Key Distribution Over a 40-dB Channel Loss Using Superconducting Single-Photon Detectors, Nature Photon., 2007, vol. 1, pp. 343–348. Stucki, D., Walenta, N., Vannel, F., et al., High Rate, Long-Distance Quantum Key Distribution Over 250 km of Ultra Low Loss Fibres, 2009, arXiv: quant-ph/0903.3907. Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., and Zbinden, H., Quantum Key Distribution Over 67 km with a Plug&Play System, New J. Phys., 2002, vol. 4, pp. 41.1–41.8. http://www.magiqtech.com http://www.idquantique.com http://www.smartquantum.com Namekata, N., Sasamori, S., and Inoue, S., 800 MHz Single-Photon Detection at 1550-nm Using an InGaAs/InP Avalanche Photodiode Operated with a Sine Wave Gating, Opt. Express, 2006, vol. 14, no. 21, pp. 10043–10049. Yuan, Z.L., Kardynal, B.E., Sharpe, A.W., and Shields, A.J., High Speed Single Photon Detection in the Near Infrared Appl. Phys. Lett., 2007, vol. 91, p. 041114. Zhang, J., Thew, R., Barreiro, C., and Zbinden, H., Practical Fast Gate Rate InGaAs/InP Single-Photon Avalanche Photodiodes, Appl. Phys. Lett., 2009, vol. 95, no. 9, p. 091103. Namekata, N., Adachi, S., and Inoue, S., 1.5 GHz Single-Photon Detection at Telecommunication Wave-length Using Sinusoidally Gated InGaAs/InP Avalanche Photodiode, Opt. Express, 2009, vol. 17, no. 8, p. 6275–6282. Yuan, Z.L., Sharpe, A.W., Dynes, J.F., et al., Multi-Gigahertz Operation of Photon Counting InGaAs Avalanche Photodiodes, Appl. Phys. Lett., 2010, vol. 96, no. 7, p. 071101. Zhang, J., Eraerdsa, P., Walentaa, N., et al., 2.23 GHz Gating InGaAs/InP Single-Photon Avalanche Diode for Quantum Key Distribution, 2010, arXiv: 1002.3240. Dixon, A.R., Yuan, Z.L., Dynes J.F., et al., Gigahertz Decoy Quantum Key Distribution with 1 Mbit/s Secure Key Rate, Opt. Express, 2008, vol. 16, no. 23, pp. 18790–18797.