Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT

Canadian Journal of Chemical Engineering - Tập 97 Số 11 - Trang 2781-2791 - 2019
Raoof Bardestani1, Gregory S. Patience2, Serge Kaliaguine1
1Department of Chemical Engineering Laval University Québec Québec, Canada
2Department of Chemical Engineering Polytechnique Montréal Montréal Québec Canada

Tóm tắt

AbstractGas physisorption is an experimental technique based on equilibrium Van der Waals interactions between gas molecules and solid particles, that quantifies the specific surface area (SSA), pore size distribution (PSD), and pore volume of solids and powders. The performance of catalysts, absorbents, chromatography column materials, and polymer resins depends on these morphological properties. Here we introduce the basic principles and procedures of physical adsorption, especially nitrogen physisorption, as a guide to students and researchers unfamiliar with the field. The Brunauer‐Emmett‐Teller theory (BET) is a common approach to estimate SSA that extends the Langmuir monolayer molecular adsorption model to multilayer layers. It relies on an equilibrium adsorption isotherm, measured at the normal boiling point of the adsorbate, eg, 77 K or 87 K for N2 and Ar, respectively. Web of Science indexed 45 400 articles in 2016 and 2017 that mentioned N2 adsorption porosimetry—BET and BJH (Barrett‐Joyner‐Halenda) keywords. The VOSViewer bibliometric tool grouped these articles into four research clusters: adsorption, activated carbon in aqueous solutions for removal of heavy metal ions; synthesis of nanoparticles and composites; catalysts performance in oxidation and reduction processes; and photocatalytic degradation with TiO2. According to the literature, the accuracy of the density function theory (DFT) method is higher than with the BJH theory and it is more reliable.

Từ khóa


Tài liệu tham khảo

10.1002/cjce.23305

10.1016/B978-0-12-394584-6.00008-X

10.1016/B978-0-08-097035-6.00007-3

Rouquerol J., 1994, Characterization of Porous Solids III, 1

10.1021/la100449z

10.1016/j.micromeso.2016.01.003

10.1016/S0008-6223(00)00155-X

10.1016/j.egypro.2011.01.089

10.1016/0376-4583(76)90024-8

10.1021/ja01269a023

10.1021/ja01145a126

10.1016/0008-6223(89)90035-3

10.1021/acs.langmuir.7b01961

10.1002/9780471730071

10.1351/pac198557040603

10.1016/0926-860X(95)00110-7

10.1016/0376-7388(94)00126-X

10.1016/j.micromeso.2017.04.040

10.1016/j.petrol.2013.11.022

Fagerlund G., 1973, Mater. Struct., 6, 239

Lowell S., 2004, Surface Area Analysis from the Langmuir and BET Theories, 58

Patience G. S., 2017, Experimental Methods and Instrumentation for Chemical Engineers

10.1016/S0927-7757(01)00612-4

10.1016/j.biombioe.2017.10.011

10.1039/b300821e

10.1016/S1387-1811(03)00339-1

ISO‐15901‐3 Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption: Part 3: Analysis of micropores by gas adsorption2019 https://www.iso.org/standard/40364.html(accessed: October 2018).

10.1016/j.colsurfa.2013.01.007

10.1103/PhysRevE.64.011602

10.1021/la051686h

10.1021/acs.chemmater.8b04113

10.1137/1.9781611971217

10.1016/j.carbon.2009.01.050

10.1002/cjce.22830

10.1002/cjce.22693

10.1007/s10853-018-2772-8

10.1007/s10934-017-0384-3

10.1016/j.carbpol.2016.03.099

10.1016/j.carbon.2009.05.007

10.1016/j.ces.2018.07.022

10.1016/j.envpol.2018.04.003

10.1016/j.jenvman.2019.03.110

10.1016/j.rser.2014.10.074

10.1016/j.chemosphere.2017.03.072

10.1016/j.apcata.2009.10.023

10.1039/C5CS00198F

10.1002/9783527639588

10.1039/C4GC01622J

10.1016/j.apsusc.2017.06.328

10.1016/j.cej.2017.08.016

10.1016/j.cej.2016.10.096

10.1002/anie.201600687

10.1016/j.carbon.2017.09.106

Eck N. J., 2010, Science, 84, 523

Web of Science™ Core Collection http://apps.webofknowledge.com(accessed on July 12 2018).

10.1016/j.scitotenv.2016.12.023

10.1021/acs.jafc.5b05055

10.1021/la00034a009

10.1021/la970776m

10.1039/C4NJ00780H

10.1016/j.fuel.2013.08.007

10.1016/j.biombioe.2015.11.010

10.1021/la00073a013

10.1021/ie200686q

10.1021/ja071174k