Experimental determination and interpretation of fluorescence and fluorescence excitation spectra of 1,2-benzanthracene cooled in supersonic jet

Optics and Spectroscopy - Tập 110 - Trang 686-693 - 2011
N. A. Borisevich1, G. G. Dyachenko1, V. A. Petukhov1, D. I. Polishchuk2, M. A. Semenov1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
2Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow oblast, Russia

Tóm tắt

We measured the fluorescence and fluorescence excitation spectra of supersonic jet-cooled 1,2-benzanthracene. Using the MO/M8ST method, we calculated the frequencies of in-plane vibrations in the ground and first excited singlet electronic states, and, in the Franck-Condon approximation, we calculated the intensities of transitions between them. Experimental spectra are interpreted based on these data. In the fluorescence excitation spectrum, the position of the line of the 0–0 transition (26535 ± 1 cm−1), which is the most intense, is determined.

Tài liệu tham khảo

J. B. Birks and A. J. W. Cameron, Proc. R. Soc. (London) A 249(1258), 257 (1959). M. S. Brodin and M. S. Soskin, Opt. Spektrosk. 6(5), 600 (1959). J. B. Birks and L. G. Christophorou, Proc. R. Soc. (London) A 274(1359), 552 (1963). H.-H. Perkampus and L. Pohl, Theor. Chim. Acta 1(2), 116 (1963). N. A. Fenina, Opt. Spektrosk. 20(5), 766 (1966). N. A. Fenina, Zh. Prikl. Spektrosk. 6(2), 216 (1967). C. E. Easterly, L. G. Christophorou, R. P. Blaunstein, and J. G. Carter, Chem. Phys. Lett. 6(6), 579 (1970). M. T. Wick, B. Nickel, and A. A. Ruth, Chem. Phys. Lett. 215(1–3), 243 (1993). S. M. Bachilo, Zh. Prikl. Spektrosk. 58(1–2), 134 (1993). D. M. Hudgins and S. A. Sandford, J. Phys. Chem. A 102(2), 329 (1998). Md. N. Khan, A. S. Al-Dwayyan, and Z. H. Zaidi, Chin. Phys. Lett. 23(9), 2407 (2006). S. R. Langhoff, J. Phys. Chem. 100, 2819 (1996). L. J. Allamandola, A. G. G. M. Tielens, and J. R. Barker, Astrophys. J. Lett. 290, L25 (1985). G. P. Van der Zwet and L. J. Allamandola, Astron. Astrophys. 146, 76 (1985). M. K. Crawford, A. G. G. M. Tielens, and L. J. Allamandola, Astrophys. J. Lett. 293, L45 (1985). N. A. Borisevich, L. B. Vodovatov, G. G. Dyachenko, V. A. Petukhov, and M. A. Semenov, Spectrosc. Lett. 35(5), 79 (1997). N. A. Borisevich, L. B. Vodovatov, G. G. D’yachenko, V. A. Petukhov, and M. A. Semenov, Opt. Spektrosk. 89(2), 249 (2000) [Opt. Spectrosc. 89 (2), 225 (2000)]. N. A. Borisevich, L. B. Vodovatov, G. G. D’yachenko, V. A. Petukhov, and M. A. Semenov, Opt. Spektrosk. 78(2), 241 (1995) [Opt. Spectrosc. 78 (2), 213 (1995)]. M. S. Gudipati, M. Maus, J. Daverkausen, and G. Hohlneicher, Chem. Phys. 192, 37 (1995). M. M. Mestechkin, Density Matrix Methods in Theory of Molecules (Naukova Dumka, Kiev, 1977) [in Russian]. N. A. Borisevich, G. G. D’yachenko, V. A. Petukhov, and M. A. Semenov, Opt. Spektrosk. 105(6), 940 (2008) [Opt. Spectrosc. 105 (6), 859 (2008)]. G. G. D’yachenko and V. A. Petukhov, Zh. Prikl. Spektrosk. 68(1), 142 (2001). G. G. Diyachenko, http://www.ivtn.ru/2005/pdf/ivtn-2005-proceedings.pdf. G. G. D’yachenko, in Materials of the 2nd All-Russia Scientific Conference “Development of Engineering and Scientific Applications in the MATLAB Medium” (Moscow, 2004), pp. 131–140. N. P. Ernsting, M. Asimov, and F. P. Schafer, Chem. Phys. Lett. 91(3), 231 (1982).