Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review
Tóm tắt
Nanofluids,
It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable
Từ khóa
Tài liệu tham khảo
Maxwell JC: A Treatise on Electricity and Magnetism. Oxford: Clarendon; 1891.
Masuda H, Ebata A, Teramea K, Hishinuma N: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei 1993, 4: 227–233.
Eastman JA, Choi US, Li S, Thompson LJ, Lee S: Enhanced thermal conductivity through the development of nanofluids. In Nanophase and Nanocomposite Materials II. Edited by: Komarneni S, Parker JC, Wollenberger HJ. Pittsburg: Materials Research Society; 1997:3–11.
Yu WH, France DM, Routbort JL, Choi SUS: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Engineering 2009, 29: 432–460. 10.1080/01457630701850851
Eapen J, Rusconi R, Piazza R, Yip S: The classical nature of thermal conduction in nanofluids. Journal of Heat Transfer 2010., 132: 102402–1-102402–14. 102402-1-102402-14. 10.1115/1.4001304
Rusconi R, Rodari E, Piazza R: Optical measurements of the thermal properties of nanofluids. Applied Physics Letters 2006., 89: 261916–1-2619163. 261916-1-2619163. 10.1063/1.2425015
Putnam SA, Cahill DG, Braun PV: Thermal conductivity of nanoparticle suspensions. Journal of Applied Physics 2006., 99: 084308–1-084308–6. 084308-1-084308-6. 10.1063/1.2189933
Venerus DC, Kabadi MS, Lee S, Perez-Luna V: Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. Journal of Applied Physics 2006., 100: 094310–1-094310–5. 094310-1-094310-5. 10.1063/1.2360378
Buongiorno J, Venerus DC, Prabhat N: A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics 2009., 106: 094312–1-094312–14. 094312-1-094312-14. 10.1063/1.3245330
Shaikh S, Lafdi K: Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An Experimental Study. Journal of Applied Physics 101: 064302–1-064302–7. 064302-1-064302-7.
Bazan JAN: Thermal conductivity of poly-aelpha-olefin (PAO)-based nanofluids. Ph.D. Thesis, University of Dayton, Dayton, OH, USA. 2010.
Yoo DH, Hong KS, Yang HS: Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim Acta 2007, 455.
Schmidt AJ, Chiesa M, Torchinsky DH, Johnson JA, Nelson KA, Chen G: Thermal conductivity of nanoparticle suspension in insulating media measured with a transient optical grating and a hotwire. Journal of Applied Physics 2008., 103: 083529–1-083529–5. 083529-1-083529-5.
Duangthongsuk W, Wongwises S: Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Experimental Thermal and Fluid Science 2009, 33: 706–714. 10.1016/j.expthermflusci.2009.01.005
Teng TP, Hung YH, Teng TC, Mo HE, Hsu HG: The effect of alumina/water nanofluid particle size on thermal conductivity. Applied Thermal Engineering 2010, 30: 2213–2218. 10.1016/j.applthermaleng.2010.05.036
Das SK, Putra N, Theisen P, Roetzel W: Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer 2003, 125: 567–574. 10.1115/1.1571080
Czarnetzki W, Roetzel W: Temperature oscillation techniques for simultaneous measurement of thermal diffusivitiy and conductivity. International Journal of Thermophysics 1995, 16: 413–422. 10.1007/BF01441907
Choi TY, Maneshian MH: Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3-w method. Nanotechnology 2009., 20: 315706–1-315706–6. 315706-1-315706-6.
Paul G, Chopkar M, Manna I, Das PK: Techniques for measuring the thermal conductivity of nanofluids: a review. Renewable and Sustainable Energy Reviews 2010, 14: 1913–1924. 10.1016/j.rser.2010.03.017
Feng Y: A new thermal conductivity model for nanofluids with convection heat transfer application. MS thesis, North Carolina State University, Raleigh, NC, USA. 2010.
Vadasz P: Rendering the transient hot wire experimental method for thermal conductivity estimation to two-phase systems-theoretical leading order results. Journal of Heat Transfer 2010., 132: 081601–1-081601–7. 081601-1-081601-7.
Das SK, Choi SUS, Yu W, Pradeep T: Nanofluids: Science and Technology. New Jersey: Wiley; 2008.
Chiesa M, Simonsen AJ: The importance of suspension stability for hot-wire measurements of thermal conductivity of colloidal suspensions. 16th Australasian Fluid Mechanics Conference, Gold Coast, Australia 2010.
Zhang X, Gu H, Fujii M: Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluid. AIAA Journal 2006, 41: 831–840. 10.2514/2.2044
Woodfield PL: A two-dimensional analytical solution for the transient short-hot-wire method. International Journal of Thermophysics 2008, 29: 1278–1298. 10.1007/s10765-008-0469-y
Mintsa HA, Roy G, Nguyen CT, Doucet D: New temperature dependent thermal conductivity data for water-based nanofluids. International Journal of Thermal Sciences 2009, 48: 363–371. 10.1016/j.ijthermalsci.2008.03.009
Ali FM, Yunus WMM, Moksin MM, Talib ZA: The effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: numerical and experimental. Review of Scientific Instruments 2010., 81: 074901–1-074901–9. 074901-1-074901-9. 10.1063/1.3458011
Patel HE, Sundararajan T, Das SK: An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. Journal of Nanoparticle Research 2010, 12: 1015–1031. 10.1007/s11051-009-9658-2
Ju YS, Kim J, Hung MT: Experimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticles. Journal of Heat Transfer 2008., 130: 092403–1-092403–6. 092403-1-092403-6.
Li CH, Williams W: Transient and steady-state experimental comparison study of effective thermal conductivity of Al2O3-water nanofluids. Journal of Heat Transfer 2008., 130: 042407–1-042407–7. 042407-1-042407-7.
Turgut A, Tavman I, Chirtoc M, Schuchmann HP, Sauter C, Tavman S: Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. International Journal of Thermophysics 2009, 30: 1213–1226. 10.1007/s10765-009-0594-2
Tavman I, Turgut A: An investigation on thermal conductivity and viscosity of water based nanofluids. Microfluidics Based Microsystems 2010, 0: 139–162. full_text
Iygengar AS, Abramson AR: Comparative radial heat flow method for thermal conductivity measurement of liquids. Journal of Heat Transfer 2009., 131: 064502–1-064502–3. 064502-1-064502-3.
Kusiak A, Pradere C, Battaglia JL: Measuring the thermal conductivity of liquids using photo-thermal radiometry. Measurement Science and Technology 2010., 21: 015403–1-015403–6. 015403-1-015403-6. 10.1088/0957-0233/21/1/015403
Rousan AA, Roy DM: A thermal comparator method for measuring thermal conductivity of cementitious materials. Industrial and Engineering Chemistry Product Research and Development 1983, 22: 349–351. 10.1021/i300010a035
Lee JH: Convection Performance of Nanofluids for Electronics Cooling, Ph. D. Dissertation. Stanford University, CA, USA; 2009.
Kolade B, Goodson KE, Eaton JK: Convective performance of nanofluids in a laminar thermally developing tube flow. Journal of Heat Transfer 2009., 131: 052402–1-052402–8. 052402-1-052402-8. 10.1115/1.3013831
Rusconi R, Isa L, Piazza R: Thermal-lensing measurement of particle thermophoresis in aqueous dispersions. Journal of Optical Society of America 2004, 21(3):605–616. 10.1364/JOSAB.21.000605
Venerus DC, Schieber JD, Iddir H, Guzman JD, Broerman AW: Measurement of thermal diffusivity in polymer melts using forced rayleigh light scattering. Journal of Polymer Science: Part B: Polymer Physics 1999, 37: 1069–1078. 10.1002/(SICI)1099-0488(19990601)37:11<1069::AID-POLB3>3.0.CO;2-U
Putnam SA, Cahill DG: Micron-scale apparatus for measurements of thermodiffusion in liquids. Review of Scientific Instruments 2004, 75(7):2368–2372. 10.1063/1.1765761
Hamilton RL, Crosser OK: Thermal conductivity of heterogeneous two-component systems. Industrial Engineering and Chemistry Fundamentals 1962, 1(3):187–191. 10.1021/i160003a005
Lee S, Choi SUS: Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer 1999, 121: 280–289. 10.1115/1.2825978
Wang XW, Xu XF, Choi SUS: Thermal conductivity of nanoparticle-fluid mixture. Journal of Thermalphysics and Heat Transfer 1999, 13: 474–480. 10.2514/2.6486
Li CH, Peterson GP: Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics 2006, 99(8):084314. 10.1063/1.2191571
Xie H, Wang J, Xi T, Liu Y: Thermal conductivity of suspensions containing nanosized SiC particles. International Journal of Thermophysics 2002, 23(2):571–580. 10.1023/A:1015121805842
Murshed SMS, Leong KC, Yang C: A combined model for the effective thermal conductivity of nanofluids. Applied Thermal Engineering 2009, 29: 2477–2483. 10.1016/j.applthermaleng.2008.12.018
Moghadassi AR, Hosseini SM, Henneke DE: Effect of CuO nanoparticles in enhancing the thermal conductivities of monoethylene glycol and paraffin fluids. Industrial Engineering and Chemistry Research 2010, 49: 1900–1904. 10.1021/ie901060e
Abareshi M, Goharshiadi EK, Zebarjad SM, Fadafan HK, Youssefi A: Fabrication, characterization and measurement of thermal conductivity of Fe3O4nanofluids. Journal of Magnetism and Magnetic Materials 2010, 322(24):3895–3901. 10.1016/j.jmmm.2010.08.016
Williams W, Buongiorno J, Hu LW: Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. Journal of Heat Transfer 2008., 130: 042412–1-042412–7. 042412-1-042412-7. 10.1115/1.2818775
Zhu D, Li X, Wang N, Wang X, Gao J, Li H: Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids. Current Applied Physics 2009, 9: 131–139. 10.1016/j.cap.2007.12.008
Jang SP, Choi SUS: Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters 2004, 84: 4316–4318. 10.1063/1.1756684
Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV: Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Physical Review E 2007., 76: 061203–1-061203–16. 061203-1-061203-16. 10.1103/PhysRevE.76.061203
Timofeeva EV, Smith DS, Yu W, France DM, Singh D, Routbort JL: Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids. Nanotechnology 2010., 21: 215703–1-215703–10. 215703-1-215703-10. 10.1088/0957-4484/21/21/215703
Murshed SMS, Leong KC, Yang C: Enhanced thermal conductivity of TiO2-water based nanofluids. International Journal of Thermal Sciences 2005, 44: 367. 10.1016/j.ijthermalsci.2004.12.005
Zhu HT, Zhang CY, Tang YM, Wang JX: Novel synthesis and thermal conductivity of CuO nanofluid. Journal of Physical Chemistry C 2007, 111: 1646. 10.1021/jp065926t
Patel HE, Das SK, Sundararajan T, Sreekumanran NA, George B, Pradeep T: Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Applied Physics Letters 2003, 83: 2931–2933. 10.1063/1.1602578
Chon CH, Kihm KD, Lee SP, Choi SUS: Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters 2005., 87: 153107–1-153107–3. 153107-1-153107-3. 10.1063/1.2093936
Beck MP, Yuan Y, Warrier P, Teja AS: The effect of particle size on the thermal conductivity of alumina nanofluids. Journal of Nanoparticle Research 2009, 11: 1129–1136. 10.1007/s11051-008-9500-2
Wei X, Kong T, Zhu H, Wang L: CuS/Cu2S nanofluids: synthesis and thermal conductivity. International of Heat and Mass Transfer 2010, 53: 1841–1843. 10.1016/j.ijheatmasstransfer.2010.01.006
Li CH, Peterson GP: Experimental studies of natural convection heat transfer of Al2O3/DI water nanoparticle suspensions (nanofluids). Advances in Mechanical Engineering 2010., 2010: 742739–1-742739–10. 742739-1-742739-10.
Wei Y, Xie H, Chen L, Li Y: Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles. Powder Technology 2010, 197: 218–221. 10.1016/j.powtec.2009.09.016
Shalkevich N, Escher W, Buergi T, Michel B, Ahmed L, Poulikakos D: On the thermal conductivity of gold nanoparticle colloid. Langmuir 2010, 26(2):663–670. 10.1021/la9022757
Beck MP, Yuan Y, Warrier P, Teja AS: The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixture. Journal of Nanoparticles Research 2010, 12: 1469–1477. 10.1007/s11051-009-9716-9
Jeffrey DJ: Conduction through a random suspension of spheres. Proceedings of Royal Society, A 1973, 335: 355–367. 10.1098/rspa.1973.0130
Davis RH: The effective thermal conductivity of a composite material with spherical inclusions. International Journal of Thermophysics 1986, 7: 609–620. 10.1007/BF00502394
Bruggeman DAG: Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I-Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen. Annalen der Physik, Leipzig 1935, 24: 636–679. 10.1002/andp.19354160705
Wang LQ, Zhou XS, Wei XH: Heat conduction mathematical models and analytical solutions. Berlin: Springer-Verlag; 2008.
Hashin Z, Shtrikman S: Conductivity of polycrystals. Physical Review 1963, 130: 129–133. 10.1103/PhysRev.130.129
Koo J, Kang Y, Kleinstreuer C: A nonlinear effective thermal conductivity model for carbon nanotube and nanofiber suspensions. Nanotechnology 2008., 19: 375705–1-375705–7. 375705-1-375705-7.
Koo J, Kleinstreuer C: A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research 2004, 6: 577–588. 10.1007/s11051-004-3170-5
Oezerinc S, Kakac S, Yazicioglu AG: Enhanced thermal conductivity of nanofluids: A state-of-the-art review. Microfluid Nanofluid 2010, 8: 145–170. 10.1007/s10404-009-0524-4
Wang LQ, Fan J: Nanofluids research: key issues. Nanoscale Research Letter 2010, 5: 1241–1252. 10.1007/s11671-010-9638-6
Prevenslik T: Nanoscale Heat Transfer by Quantum Mechanics. Fifth International Conference on Thermal Engineering: Theory and Applications, Marrakesh, Morocco 2010.
Nield DA, Kuznetsov AV: The effect of local thermal nonequilibrium on the onset of convection in a nanofluid. Journal of Heat Transfer 2010., 132: 052405–1-052405–7 052405-1-052405-7
Leal LG: On the effective conductivity of a dilute suspension of spherical drops in the limit of low particle Peclet number. Chem Eng Commun 1973, 1: 21–31. 10.1080/00986447308960412
Gupte SK, Advani SG: Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension. Int J Heat Mass Transfer 1995, 38(16):2945–2958. 10.1016/0017-9310(95)00060-M
Keblinski P, Phillpot SR, Choi SUS, Eastman JA: Mechanisms of heat flow in suspensions of nanos-sezed particles (nanofluids). International Journal of Heat and Mass Transfer 2002, 45: 855–863. 10.1016/S0017-9310(01)00175-2
Jang SP, Choi SUS: Effects of various parameters on nanofluid thermal conductivity. ASME J Heat Transfer 2007, 129: 617–623. 10.1115/1.2712475
Jang SP, Choi SUS: Cooling performance of a microchannel heat sink with nanofluids. Appl Therm Eng 2006, 26: 2457–2463. 10.1016/j.applthermaleng.2006.02.036
Kleinstreuer C, Li J: Discussion: effects of various parameters on nanofluid thermal conductivity. ASME Journal of Heat Transfer 2008., 130: 025501–1-025501–3. 025501-1-025501-3. 10.1115/1.2812307
Prasher R: Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. Journal of Heat Transfer 2006, 128: 588–595. 10.1115/1.2188509
Li J: Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, PhD Thesis. NC State University, Raleigh, NC, the United States; 2008.
Kumar DH, Patel HE, Kumar VRR, Sundararajan T, Pradeep T, Das SK: Model for heat conduction in nanofluids. Physical Review Letters 2004., 93: 144301–1-144301–4. 144301-1-144301-4. 10.1103/PhysRevLett.93.144301
Koo JM: Computational nanofluid flow and heat transfer analyses applied to micro-systems, Ph.D Thesis. NC State University, Raleigh, NC, USA; 2005.
Bao Y: Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (nanofluids). Journal of Heat Transfer 130: 042408–1-042408–5. 042408-1-042408-5.
Feng Y, Kleinstreuer C: Nanofluid convective heat transfer in a parallel-disk system. International Journal of Heat and Mass Transfer 2010, 53: 4619–4628. 10.1016/j.ijheatmasstransfer.2010.06.031
Chopkar M, Sudarshan S, Das PK, Manna I: Effect of particle size on thermal conductivity of nanofluid. Metallurgical and Materials Transactions A 2008, 39A: 1535–1542. 10.1007/s11661-007-9444-7
Wu D, Zhu H, Wang L, Liu L: Critical issues in nanofluids preparation, characterization and thermal conductivity. Current Nanoscience 2009, 5: 103–112. 10.2174/157341309787314548
Singh D, Timofeeva E, Yu W, Routbort J, France D, Smith D, Lopez-Cepero JM: An investigation of silicon carbide-water nanofluid for heat transfer applications. Journal of Applied Physics 2009., 15: 064306–1-064306–6. 064306-1-064306-6.
Jung YJ, Jung YY: Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL). International Journal of Heat and Mass Transfer 2009, 52: 525–528. 10.1016/j.ijheatmasstransfer.2008.07.016
Pak BC, Cho YI: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer 1998, 11: 151–170. 10.1080/08916159808946559
Li Q, Xuan Y: Convective heat transfer and flow characteristics of Cu-water nanofluid. Science in China (Series E) 2002, 45: 408–416.
Wen D, Ding Y: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer 2004, 47: 5181–5188. 10.1016/j.ijheatmasstransfer.2004.07.012
Ding Y, Alias H, Wen D, Williams RA: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer 2006, 49: 240–250. 10.1016/j.ijheatmasstransfer.2005.07.009
Heris SZ, Esfahany MN, Etemad SG: Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. International Journal of Heat and Fluid Flow 2007, 28: 203–210. 10.1016/j.ijheatfluidflow.2006.05.001
Rea U, McKrell T, Hu L, Buongiorno J: Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids. International Journal of Heat and Mass Transfer 2009, 52: 2042–2048. 10.1016/j.ijheatmasstransfer.2008.10.025