Nghiên cứu thực nghiệm và lý thuyết về tăng cường độ dẫn nhiệt của nanofluid: một bài tổng quan
Tóm tắt
Các nanofluid, tức là các hạt nano kim loại được phân tán tốt với khối lượng tỷ lệ thấp trong chất lỏng, có thể nâng cao độ dẫn nhiệt của hỗn hợp,
Rõ ràng rằng vẫn còn những câu hỏi then chốt liên quan đến sự kết hợp và điều kiện tốt nhất của nanoparticle và chất lỏng, việc đo lường đáng tin cậy các giá trị
Từ khóa
Tài liệu tham khảo
Maxwell JC: A Treatise on Electricity and Magnetism. Oxford: Clarendon; 1891.
Masuda H, Ebata A, Teramea K, Hishinuma N: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei 1993, 4: 227–233.
Eastman JA, Choi US, Li S, Thompson LJ, Lee S: Enhanced thermal conductivity through the development of nanofluids. In Nanophase and Nanocomposite Materials II. Edited by: Komarneni S, Parker JC, Wollenberger HJ. Pittsburg: Materials Research Society; 1997:3–11.
Yu WH, France DM, Routbort JL, Choi SUS: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Engineering 2009, 29: 432–460. 10.1080/01457630701850851
Eapen J, Rusconi R, Piazza R, Yip S: The classical nature of thermal conduction in nanofluids. Journal of Heat Transfer 2010., 132: 102402–1-102402–14. 102402-1-102402-14. 10.1115/1.4001304
Rusconi R, Rodari E, Piazza R: Optical measurements of the thermal properties of nanofluids. Applied Physics Letters 2006., 89: 261916–1-2619163. 261916-1-2619163. 10.1063/1.2425015
Putnam SA, Cahill DG, Braun PV: Thermal conductivity of nanoparticle suspensions. Journal of Applied Physics 2006., 99: 084308–1-084308–6. 084308-1-084308-6. 10.1063/1.2189933
Venerus DC, Kabadi MS, Lee S, Perez-Luna V: Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. Journal of Applied Physics 2006., 100: 094310–1-094310–5. 094310-1-094310-5. 10.1063/1.2360378
Buongiorno J, Venerus DC, Prabhat N: A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics 2009., 106: 094312–1-094312–14. 094312-1-094312-14. 10.1063/1.3245330
Shaikh S, Lafdi K: Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An Experimental Study. Journal of Applied Physics 101: 064302–1-064302–7. 064302-1-064302-7.
Bazan JAN: Thermal conductivity of poly-aelpha-olefin (PAO)-based nanofluids. Ph.D. Thesis, University of Dayton, Dayton, OH, USA. 2010.
Yoo DH, Hong KS, Yang HS: Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim Acta 2007, 455.
Schmidt AJ, Chiesa M, Torchinsky DH, Johnson JA, Nelson KA, Chen G: Thermal conductivity of nanoparticle suspension in insulating media measured with a transient optical grating and a hotwire. Journal of Applied Physics 2008., 103: 083529–1-083529–5. 083529-1-083529-5.
Duangthongsuk W, Wongwises S: Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Experimental Thermal and Fluid Science 2009, 33: 706–714. 10.1016/j.expthermflusci.2009.01.005
Teng TP, Hung YH, Teng TC, Mo HE, Hsu HG: The effect of alumina/water nanofluid particle size on thermal conductivity. Applied Thermal Engineering 2010, 30: 2213–2218. 10.1016/j.applthermaleng.2010.05.036
Das SK, Putra N, Theisen P, Roetzel W: Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer 2003, 125: 567–574. 10.1115/1.1571080
Czarnetzki W, Roetzel W: Temperature oscillation techniques for simultaneous measurement of thermal diffusivitiy and conductivity. International Journal of Thermophysics 1995, 16: 413–422. 10.1007/BF01441907
Choi TY, Maneshian MH: Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3-w method. Nanotechnology 2009., 20: 315706–1-315706–6. 315706-1-315706-6.
Paul G, Chopkar M, Manna I, Das PK: Techniques for measuring the thermal conductivity of nanofluids: a review. Renewable and Sustainable Energy Reviews 2010, 14: 1913–1924. 10.1016/j.rser.2010.03.017
Feng Y: A new thermal conductivity model for nanofluids with convection heat transfer application. MS thesis, North Carolina State University, Raleigh, NC, USA. 2010.
Vadasz P: Rendering the transient hot wire experimental method for thermal conductivity estimation to two-phase systems-theoretical leading order results. Journal of Heat Transfer 2010., 132: 081601–1-081601–7. 081601-1-081601-7.
Das SK, Choi SUS, Yu W, Pradeep T: Nanofluids: Science and Technology. New Jersey: Wiley; 2008.
Chiesa M, Simonsen AJ: The importance of suspension stability for hot-wire measurements of thermal conductivity of colloidal suspensions. 16th Australasian Fluid Mechanics Conference, Gold Coast, Australia 2010.
Zhang X, Gu H, Fujii M: Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluid. AIAA Journal 2006, 41: 831–840. 10.2514/2.2044
Woodfield PL: A two-dimensional analytical solution for the transient short-hot-wire method. International Journal of Thermophysics 2008, 29: 1278–1298. 10.1007/s10765-008-0469-y
Mintsa HA, Roy G, Nguyen CT, Doucet D: New temperature dependent thermal conductivity data for water-based nanofluids. International Journal of Thermal Sciences 2009, 48: 363–371. 10.1016/j.ijthermalsci.2008.03.009
Ali FM, Yunus WMM, Moksin MM, Talib ZA: The effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: numerical and experimental. Review of Scientific Instruments 2010., 81: 074901–1-074901–9. 074901-1-074901-9. 10.1063/1.3458011
Patel HE, Sundararajan T, Das SK: An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. Journal of Nanoparticle Research 2010, 12: 1015–1031. 10.1007/s11051-009-9658-2
Ju YS, Kim J, Hung MT: Experimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticles. Journal of Heat Transfer 2008., 130: 092403–1-092403–6. 092403-1-092403-6.
Li CH, Williams W: Transient and steady-state experimental comparison study of effective thermal conductivity of Al2O3-water nanofluids. Journal of Heat Transfer 2008., 130: 042407–1-042407–7. 042407-1-042407-7.
Turgut A, Tavman I, Chirtoc M, Schuchmann HP, Sauter C, Tavman S: Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. International Journal of Thermophysics 2009, 30: 1213–1226. 10.1007/s10765-009-0594-2
Tavman I, Turgut A: An investigation on thermal conductivity and viscosity of water based nanofluids. Microfluidics Based Microsystems 2010, 0: 139–162. full_text
Iygengar AS, Abramson AR: Comparative radial heat flow method for thermal conductivity measurement of liquids. Journal of Heat Transfer 2009., 131: 064502–1-064502–3. 064502-1-064502-3.
Kusiak A, Pradere C, Battaglia JL: Measuring the thermal conductivity of liquids using photo-thermal radiometry. Measurement Science and Technology 2010., 21: 015403–1-015403–6. 015403-1-015403-6. 10.1088/0957-0233/21/1/015403
Rousan AA, Roy DM: A thermal comparator method for measuring thermal conductivity of cementitious materials. Industrial and Engineering Chemistry Product Research and Development 1983, 22: 349–351. 10.1021/i300010a035
Lee JH: Convection Performance of Nanofluids for Electronics Cooling, Ph. D. Dissertation. Stanford University, CA, USA; 2009.
Kolade B, Goodson KE, Eaton JK: Convective performance of nanofluids in a laminar thermally developing tube flow. Journal of Heat Transfer 2009., 131: 052402–1-052402–8. 052402-1-052402-8. 10.1115/1.3013831
Rusconi R, Isa L, Piazza R: Thermal-lensing measurement of particle thermophoresis in aqueous dispersions. Journal of Optical Society of America 2004, 21(3):605–616. 10.1364/JOSAB.21.000605
Venerus DC, Schieber JD, Iddir H, Guzman JD, Broerman AW: Measurement of thermal diffusivity in polymer melts using forced rayleigh light scattering. Journal of Polymer Science: Part B: Polymer Physics 1999, 37: 1069–1078. 10.1002/(SICI)1099-0488(19990601)37:11<1069::AID-POLB3>3.0.CO;2-U
Putnam SA, Cahill DG: Micron-scale apparatus for measurements of thermodiffusion in liquids. Review of Scientific Instruments 2004, 75(7):2368–2372. 10.1063/1.1765761
Hamilton RL, Crosser OK: Thermal conductivity of heterogeneous two-component systems. Industrial Engineering and Chemistry Fundamentals 1962, 1(3):187–191. 10.1021/i160003a005
Lee S, Choi SUS: Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer 1999, 121: 280–289. 10.1115/1.2825978
Wang XW, Xu XF, Choi SUS: Thermal conductivity of nanoparticle-fluid mixture. Journal of Thermalphysics and Heat Transfer 1999, 13: 474–480. 10.2514/2.6486
Li CH, Peterson GP: Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics 2006, 99(8):084314. 10.1063/1.2191571
Xie H, Wang J, Xi T, Liu Y: Thermal conductivity of suspensions containing nanosized SiC particles. International Journal of Thermophysics 2002, 23(2):571–580. 10.1023/A:1015121805842
Murshed SMS, Leong KC, Yang C: A combined model for the effective thermal conductivity of nanofluids. Applied Thermal Engineering 2009, 29: 2477–2483. 10.1016/j.applthermaleng.2008.12.018
Moghadassi AR, Hosseini SM, Henneke DE: Effect of CuO nanoparticles in enhancing the thermal conductivities of monoethylene glycol and paraffin fluids. Industrial Engineering and Chemistry Research 2010, 49: 1900–1904. 10.1021/ie901060e
Abareshi M, Goharshiadi EK, Zebarjad SM, Fadafan HK, Youssefi A: Fabrication, characterization and measurement of thermal conductivity of Fe3O4nanofluids. Journal of Magnetism and Magnetic Materials 2010, 322(24):3895–3901. 10.1016/j.jmmm.2010.08.016
Williams W, Buongiorno J, Hu LW: Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. Journal of Heat Transfer 2008., 130: 042412–1-042412–7. 042412-1-042412-7. 10.1115/1.2818775
Zhu D, Li X, Wang N, Wang X, Gao J, Li H: Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids. Current Applied Physics 2009, 9: 131–139. 10.1016/j.cap.2007.12.008
Jang SP, Choi SUS: Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters 2004, 84: 4316–4318. 10.1063/1.1756684
Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV: Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Physical Review E 2007., 76: 061203–1-061203–16. 061203-1-061203-16. 10.1103/PhysRevE.76.061203
Timofeeva EV, Smith DS, Yu W, France DM, Singh D, Routbort JL: Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids. Nanotechnology 2010., 21: 215703–1-215703–10. 215703-1-215703-10. 10.1088/0957-4484/21/21/215703
Murshed SMS, Leong KC, Yang C: Enhanced thermal conductivity of TiO2-water based nanofluids. International Journal of Thermal Sciences 2005, 44: 367. 10.1016/j.ijthermalsci.2004.12.005
Zhu HT, Zhang CY, Tang YM, Wang JX: Novel synthesis and thermal conductivity of CuO nanofluid. Journal of Physical Chemistry C 2007, 111: 1646. 10.1021/jp065926t
Patel HE, Das SK, Sundararajan T, Sreekumanran NA, George B, Pradeep T: Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Applied Physics Letters 2003, 83: 2931–2933. 10.1063/1.1602578
Chon CH, Kihm KD, Lee SP, Choi SUS: Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters 2005., 87: 153107–1-153107–3. 153107-1-153107-3. 10.1063/1.2093936
Beck MP, Yuan Y, Warrier P, Teja AS: The effect of particle size on the thermal conductivity of alumina nanofluids. Journal of Nanoparticle Research 2009, 11: 1129–1136. 10.1007/s11051-008-9500-2
Wei X, Kong T, Zhu H, Wang L: CuS/Cu2S nanofluids: synthesis and thermal conductivity. International of Heat and Mass Transfer 2010, 53: 1841–1843. 10.1016/j.ijheatmasstransfer.2010.01.006
Li CH, Peterson GP: Experimental studies of natural convection heat transfer of Al2O3/DI water nanoparticle suspensions (nanofluids). Advances in Mechanical Engineering 2010., 2010: 742739–1-742739–10. 742739-1-742739-10.
Wei Y, Xie H, Chen L, Li Y: Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles. Powder Technology 2010, 197: 218–221. 10.1016/j.powtec.2009.09.016
Shalkevich N, Escher W, Buergi T, Michel B, Ahmed L, Poulikakos D: On the thermal conductivity of gold nanoparticle colloid. Langmuir 2010, 26(2):663–670. 10.1021/la9022757
Beck MP, Yuan Y, Warrier P, Teja AS: The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixture. Journal of Nanoparticles Research 2010, 12: 1469–1477. 10.1007/s11051-009-9716-9
Jeffrey DJ: Conduction through a random suspension of spheres. Proceedings of Royal Society, A 1973, 335: 355–367. 10.1098/rspa.1973.0130
Davis RH: The effective thermal conductivity of a composite material with spherical inclusions. International Journal of Thermophysics 1986, 7: 609–620. 10.1007/BF00502394
Bruggeman DAG: Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I-Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen. Annalen der Physik, Leipzig 1935, 24: 636–679. 10.1002/andp.19354160705
Wang LQ, Zhou XS, Wei XH: Heat conduction mathematical models and analytical solutions. Berlin: Springer-Verlag; 2008.
Hashin Z, Shtrikman S: Conductivity of polycrystals. Physical Review 1963, 130: 129–133. 10.1103/PhysRev.130.129
Koo J, Kang Y, Kleinstreuer C: A nonlinear effective thermal conductivity model for carbon nanotube and nanofiber suspensions. Nanotechnology 2008., 19: 375705–1-375705–7. 375705-1-375705-7.
Koo J, Kleinstreuer C: A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research 2004, 6: 577–588. 10.1007/s11051-004-3170-5
Oezerinc S, Kakac S, Yazicioglu AG: Enhanced thermal conductivity of nanofluids: A state-of-the-art review. Microfluid Nanofluid 2010, 8: 145–170. 10.1007/s10404-009-0524-4
Wang LQ, Fan J: Nanofluids research: key issues. Nanoscale Research Letter 2010, 5: 1241–1252. 10.1007/s11671-010-9638-6
Prevenslik T: Nanoscale Heat Transfer by Quantum Mechanics. Fifth International Conference on Thermal Engineering: Theory and Applications, Marrakesh, Morocco 2010.
Nield DA, Kuznetsov AV: The effect of local thermal nonequilibrium on the onset of convection in a nanofluid. Journal of Heat Transfer 2010., 132: 052405–1-052405–7 052405-1-052405-7
Leal LG: On the effective conductivity of a dilute suspension of spherical drops in the limit of low particle Peclet number. Chem Eng Commun 1973, 1: 21–31. 10.1080/00986447308960412
Gupte SK, Advani SG: Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension. Int J Heat Mass Transfer 1995, 38(16):2945–2958. 10.1016/0017-9310(95)00060-M
Keblinski P, Phillpot SR, Choi SUS, Eastman JA: Mechanisms of heat flow in suspensions of nanos-sezed particles (nanofluids). International Journal of Heat and Mass Transfer 2002, 45: 855–863. 10.1016/S0017-9310(01)00175-2
Jang SP, Choi SUS: Effects of various parameters on nanofluid thermal conductivity. ASME J Heat Transfer 2007, 129: 617–623. 10.1115/1.2712475
Jang SP, Choi SUS: Cooling performance of a microchannel heat sink with nanofluids. Appl Therm Eng 2006, 26: 2457–2463. 10.1016/j.applthermaleng.2006.02.036
Kleinstreuer C, Li J: Discussion: effects of various parameters on nanofluid thermal conductivity. ASME Journal of Heat Transfer 2008., 130: 025501–1-025501–3. 025501-1-025501-3. 10.1115/1.2812307
Prasher R: Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. Journal of Heat Transfer 2006, 128: 588–595. 10.1115/1.2188509
Li J: Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, PhD Thesis. NC State University, Raleigh, NC, the United States; 2008.
Kumar DH, Patel HE, Kumar VRR, Sundararajan T, Pradeep T, Das SK: Model for heat conduction in nanofluids. Physical Review Letters 2004., 93: 144301–1-144301–4. 144301-1-144301-4. 10.1103/PhysRevLett.93.144301
Koo JM: Computational nanofluid flow and heat transfer analyses applied to micro-systems, Ph.D Thesis. NC State University, Raleigh, NC, USA; 2005.
Bao Y: Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (nanofluids). Journal of Heat Transfer 130: 042408–1-042408–5. 042408-1-042408-5.
Feng Y, Kleinstreuer C: Nanofluid convective heat transfer in a parallel-disk system. International Journal of Heat and Mass Transfer 2010, 53: 4619–4628. 10.1016/j.ijheatmasstransfer.2010.06.031
Chopkar M, Sudarshan S, Das PK, Manna I: Effect of particle size on thermal conductivity of nanofluid. Metallurgical and Materials Transactions A 2008, 39A: 1535–1542. 10.1007/s11661-007-9444-7
Wu D, Zhu H, Wang L, Liu L: Critical issues in nanofluids preparation, characterization and thermal conductivity. Current Nanoscience 2009, 5: 103–112. 10.2174/157341309787314548
Singh D, Timofeeva E, Yu W, Routbort J, France D, Smith D, Lopez-Cepero JM: An investigation of silicon carbide-water nanofluid for heat transfer applications. Journal of Applied Physics 2009., 15: 064306–1-064306–6. 064306-1-064306-6.
Jung YJ, Jung YY: Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL). International Journal of Heat and Mass Transfer 2009, 52: 525–528. 10.1016/j.ijheatmasstransfer.2008.07.016
Pak BC, Cho YI: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer 1998, 11: 151–170. 10.1080/08916159808946559
Li Q, Xuan Y: Convective heat transfer and flow characteristics of Cu-water nanofluid. Science in China (Series E) 2002, 45: 408–416.
Wen D, Ding Y: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer 2004, 47: 5181–5188. 10.1016/j.ijheatmasstransfer.2004.07.012
Ding Y, Alias H, Wen D, Williams RA: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer 2006, 49: 240–250. 10.1016/j.ijheatmasstransfer.2005.07.009
Heris SZ, Esfahany MN, Etemad SG: Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. International Journal of Heat and Fluid Flow 2007, 28: 203–210. 10.1016/j.ijheatfluidflow.2006.05.001
Rea U, McKrell T, Hu L, Buongiorno J: Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids. International Journal of Heat and Mass Transfer 2009, 52: 2042–2048. 10.1016/j.ijheatmasstransfer.2008.10.025