Experimental and theoretical insights of functionalized hexavanadates on Na+/K+-ATPase activity; molecular interaction field, ab initio calculations and in vitro assays
Tài liệu tham khảo
Pope, 1994
Aureliano, 2005, Decavanadate effects in biological systems, J. Inorg. Biochem., 99, 979, 10.1016/j.jinorgbio.2005.02.024
Aureliano, 2009, Decavanadate: a journey in a search of a role, Dalton Trans., 9093, 10.1039/b907581j
Aureliano, 2014, Decavanadate in vitro and in vivo effects: facts and opinions, J. Inorg. Biochem., 137, 123, 10.1016/j.jinorgbio.2014.05.002
Monakhov, 2015, Semimetal-functionalised polyoxovanadates, Chem. Soc. Rev., 44, 8443, 10.1039/C5CS00531K
Pessoaa, 2015, Vanadium compounds in medicine, Coord. Chem. Rev., 301–302, 24, 10.1016/j.ccr.2014.12.002
Aureliano, 2016, Decavanadate toxicology and pharmacological activities: V10 or V1, both or none?, Oxidative Med. Cell. Longev., 1, 10.1155/2016/6103457
Qi, 2013, Inhibition of hepatitis C virus infection by polyoxometalates, Antivir. Res., 100, 392, 10.1016/j.antiviral.2013.08.025
Mitra, 2010, A molecular magnet confined in the nanocage of a globular protein, ChemPhysChem, 11, 389, 10.1002/cphc.200900708
Chen, 1990, Synthesis and structural characterization of a polyoxovanadate coordination complex with a hexametalate core: [(n-C4H9)4N]2[V6O13{O2NC(CH2O)3}2], Inorg. Chem., 29, 1456, 10.1021/ic00333a002
Chen, 1992, Coordination compounds of polyoxovanadates with a hexametalate core. Chemical and structural characterization of [VV6O13[(OCH2)3CR]2]2−, [VV6O11(OH)2[(OCH2)3CR]2] [VIV4VV2O9(OH)4[(OCH2)3CR]2]2−, and [VIV6O7(OH)6](OCH2)3CR]2]2−, J. Am. Chem. Soc., 114, 4667, 10.1021/ja00038a033
Müller, 1995, Cis-/trans-isomerie bei bis-(trisalkoxy)-hexavanadaten: cis-Na2[V6IVO7(OH)6{(OCH2)3CCH2OH}2]·8 H2O, cis-(CN3H6)3[VIVV5VO13{(OCH2)3CCH2OH}2]·4,5 H2O und trans-(CN3H6)2[V6VO13{(OCH2)3CCH2OH}2] · H2O, Z. Anorg. Allg. Chem., 621, 1818, 10.1002/zaac.19956211103
Yin, 2014, Spontaneous stepwise self-assembly of a polyoxometalate– organic hybrid into catalytically active one-dimensional anisotropic structures, Chem. Eur. J., 20, 9589, 10.1002/chem.201402974
J.K. Li, C.W. Hu. Progress in polyoxovanadate chemistry, Chinese J. Inorg. Chem. 31 (2015) 1705–1725. htpps://doi.org/10.11862/CJIC.2015.247.
Bayaguud, 2017, A simple synthetic route to polyoxovanadate-based organicinorganic hybrids using EEDQ as an ester-coupling agent, Dalton Trans., 46, 4602, 10.1039/C7DT00274B
Huang, 2017, Synthesis, crystal structure and spectroscopic studies of a series of hexavanadate hybrids with multiple functional groups, Inorg. Chem. Front., 4, 165, 10.1039/C6QI00302H
Ramos, 2012, Recent advances into vanadyl, vanadate and decavanadate interactions with actin, Metallomics, 4, 16, 10.1039/C1MT00124H
Sánchez-Lara, 2018, Decavanadate salts of cytosine and metformin: a combined experimental-theoretical study of potential metallodrugs against diabetes and cancer, Front Chem, 6, 10.3389/fchem.2018.00402
Treviño, 2016, Metforminium decavanadate as a potential metallopharmaceutical drug for the treatment of diabetes mellitus, Oxidative Med. Cell. Longev., 2016, 10.1155/2016/6058705
Carpéné, 2017, Insulin-mimetic compound hexaquis (benzylammonium) decavanadate is antilipolytic in human fat cells, World J. Diabetes, 8, 143, 10.4239/wjd.v8.i4.143
Tiago, 2007, Binding modes of decavanadate to myosin and inhibition of the actomyosin ATPase activity, Biochim. Biophys. Acta, 1771, 474, 10.1016/j.bbapap.2007.02.004
Steens, 2010, Hydrolytic cleavage of DNA-model substrates promoted by polyoxovanadates, Dalton Trans., 39, 585, 10.1039/B913471A
Fraqueza, 2012, Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanadate, vanadate, tungstate and molybdate, J. Inorg. Biochem., 107, 82, 10.1016/j.jinorgbio.2011.10.010
Fraqueza, 2012, Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca2+-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibition, Dalton Trans., 41, 12749, 10.1039/c2dt31688a
Ramos, 2012, A comparison between vanadyl, vanadate, and decavanadate effects in actin structure and function: combination of several spectroscopic studies, Spectrosc-Int J, 5-6, 355, 10.1155/2012/532904
Ramos, 2006, Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate, J. Inorg. Biochem., 100, 1734, 10.1016/j.jinorgbio.2006.06.007
Guo, 2018, In vitro anticandidal activity and mechanism of a polyoxovanadate functionalized by Zn-fluconazole complexes, Molecules, 23, 1122, 10.3390/molecules23051122
Bijelic, 2015, Hen egg-white lysozyme crystallisation: protein stacking and structure stability enhanced by a tellurium(VI)-centred polyoxotungstate, ChemBioChem, 16, 233, 10.1002/cbic.201402597
Cruciani, 2006, Applications in Drug Discovery and ADME Prediction
Krstić, 2009, Influence of decavanadate on rat synaptic plasma membrane ATPases activity, Gen. Physiol. Biophys., 28, 302, 10.4149/gpb_2009_03_302
Xu, 2016, A combined crystallographic analysis and ab initio calculations to interpret the reactivity of functionalized hexavanadates and their inhibitor potency toward Na(+)/K(+)-ATPase, J. Inorg. Biochem., 161, 27, 10.1016/j.jinorgbio.2016.04.029
Vasilets, 1993, Structure-function relationships of cation binding in the Na+/K+-ATPase, Biochim. Biophys. Acta, 1154, 201, 10.1016/0304-4157(93)90012-D
Blasiak, 1995, Cooperative binding of the organophosphate paraoxon to the (Na+ + K+)-ATPase, Z. Naturforsch. C, 50, 660, 10.1515/znc-1995-9-1010
Krstić, 2004, Effects of digoxin and gitoxin on the enzymatic activity and kinetic parameters of Na+/K+-ATPase, J. Enz. Inhib. Med. Chem., 19, 409, 10.1080/14756360410001722065
Krstić, 2005, Inhibition of Na+/K+-ATPase and Mg2+-ATPase by metal ions and prevention and recovery of inhibited activities by chelators, J. Enz. Inhib. Med. Chem., 20, 469, 10.1080/14756360500213280
Pezza, 2002, Vanadate inhibits the ATPase activity and DNA binding capability of bacterial MutS. A structural model for the vanadate–MutS interaction at the Walker A motif, Nucleic Acids Res., 30, 4700, 10.1093/nar/gkf606
Aureliano, 2013, Ion pumps as biological targets for decavanadate, Dalton Trans., 42, 11770, 10.1039/c3dt50462j
Wu, 2011, DMAP-catalyzed esterification of pentaerythritol-derivatized POMs: a new route for the functionalization of polyoxometalates, Chem. Commun., 47, 5557, 10.1039/C1CC10650C
Xiao, 2016, An easy way to construct polyoxovanadate-based organic–inorganic hybrids by stepwise functionalization, Eur. J. Inorg. Chem., 808, 10.1002/ejic.201501297
Krstić, 2006, The influence of potassium ion (K+) on digoxin-induced inhibition of porcine cerebral cortex Na+/K+-ATPase, J. Enzym. Inhib. Med. Ch., 21, 471, 10.1080/14756360600642230
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford CT, 2010.
Binning, 1990, Compact contracted basis sets for third-row atoms: Ga–Kr, J. Comp. Chem., 11, 1206, 10.1002/jcc.540111013
Bošnjaković-Pavlović, 2009, Electronic properties of a cytosine decavanadate: toward a better understanding of chemical and biological properties of decavanadates, Inorg. Chem., 48, 9742, 10.1021/ic9008575
Xu, 2015
Xu, 2017, Experimental evidence of charge transfer in a functionalized hexavanadate: a high resolution X-ray diffraction study, Phys. Chem. Chem.Phys., 19, 18162, 10.1039/C7CP01840A
Ugo Varetto, (Molekel 5.4).
Keith
Carosati, 2004, Hydrogen bonding interactions of covalently bonded fluorine atoms: from crystallographic data to a new angular function in the GRID force field, J. Med. Chem., 47, 5114, 10.1021/jm0498349
Linnenberg, 2017, The Lindqvist hexavanadate: a platform for coordination-directed assembly, 39
Kurata, 2005, Cyclic polyvanadates incorporating template transition metal cationic species: synthesis and structures of hexavanadate [PdV6O18]4-, octavanadate [Cu2V8O24]4−, and decavanadate [Ni4V10O30(OH)2(H2O)6]4−, Inorg. Chem., 44, 2524, 10.1021/ic048751f
Khan, 1992, Hexavanadiuin polyoxo lkoxide anion clusters: structures of the mixed-valence species (Me3NH)[VIV5VVO7(OH)3{CH3C(CH2O)3}3] and of the reduced complex Na2[VIV6O7{CH3CH 2C(CH2O)3}4], Inorg. Chem., 31, 1556, 10.1021/ic00035a007
Spandl, 2003, Synthesis and structural characterization of redox-active dodecamethoxoheptaoxohexavanadium clusters, Angew. Chem. Int. Ed., 42, 1163, 10.1002/anie.200390306
Bošnjaković-Pavlović, 2011, Crystallographic statistical study of decavanadate anion based-structures: toward a prediction of noncovalent interactions, Cryst. Growth Des., 11, 3778, 10.1021/cg200236d