Experimental and modelling studies on the uncatalysed thermal conversion of inulin to 5-hydroxymethylfurfural and levulinic acid
Tóm tắt
Từ khóa
Tài liệu tham khảo
Werpy T, Petersen G (2004) Top value added chemicals from biomass. US Department of Energy, Springfield
Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US department of energy’s “top 10” revisited. Green Chem 12:539–554
Li C, Zhang Z, Zongbao ZK (2009) Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation. Tetrahedron Lett 50:5403–5405
Roman-Leskhov Y, Barret J, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–986
Lewkowski J (2001) Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivative. ARKIVOC (i):17–54
Corma A, Velty A, Sara I (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502
Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem 46:7164–7183
Boisen A, Christensen T, Fu W, Gorbanev YY, Hansen TS, Jensen JS et al (2009) Process integration for the conversion of glucose to 2,5-furandicarboxylic acid. Chem Eng Res Des 87:1318–1327
van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597
Mednick ML (1962) The Acid-base-catalyzed conversion of aldohexose into 5-(hydroxymethyl)-2-furfural. National Meeting of the American Chemical Society, Chicago
McKibbins S, Harris J, Saeman J (1962) Kinetics of the acid catalyzed conversion of glucose to 5-hydroxymethyl-2-furadehyde and levulinic acid. For Prod J Part V 12:17–23
Kuster BFM (1977) The influence of water concentration on the dehydration of d-fructose. Carbohydr Res 54:177–183
Kuster BFM, Baan HSVD (1977) The influence of the initial and catalyst concentrations on the dehydration of d-fructose. Carbohydr Res 54:165–176
Kuster BFM, Temmink HMG (1977) The Influence of pH and weak-acid anions on the dehydration of d-fructose. Carbohydr Res 54:185–191
Rapph K (1988) Process for preparing pure 5-hydroxymethylfuraldehyde. Patent No. US 4740605, Germany
Seri K, Inoue Y (2001) Catalytic activity of lanthanide(iii) ions for the dehydration of hexose to 5-hydroxymethyl-2-furaldehyde in water. Bull Chem Soc Jpn 74:1145–1150
Bicker M, Hirth J, Vogel H (2003) Dehydration of fructose to 5-hydroxymethylfurfural in sub and supercritical acetone. Green Chem 5:280–284
Watanabe M, Aizawa Y, Iida T, Aida TM, Levy C, Sue K et al (2005) Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydr Res 340:1925–1930
Girisuta B, Janssen LM, Heeres HJ (2006) A Kinetic study on the conversion of glucose to levulinic acid. Chem Eng Res Des 84(A5):339–349
Tarabanko V, Chernyak MY, Nepomnyashchiy I, Smirnova MA (2006) High temperature 5-hydroxymethylfurfural synthesis in a flow reactor. Chem Sustain Dev 14:49–53
Kuster BFM (1990) 5-Hydroxymethylfurfural. A review focussing on its manufacturing. Starch/Starke 42:314–321
Newth FH (1951) The formation of furan compounds from hexoses. Adv Carbohydr Chem 6:83–106
Musau RM, Munavu RM (1987) The preparation of 5-hydroxymethyi-2-furaldehyde (HMF) from d-fructose in the presence of DMSO. Biomass 13:67–74
Amarasekara AS, Ebede CC (2008) Mechanism of the dehydration of d-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150°C: an NMR study. Carbohydr Res 343:3021–3024
Torres AI, Daoutidis P, Tsapatsis M (2010) Continuous production of 5-hydroxymethylfurfural from fructose: a design case study. Energy Environ Sci 3:1560–1572
Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793
Praznik W, Beck R (1984) Determination of fructan oligomers of degree of polymerization 2–30 by high-performance liquid chromatography. J Chromatogr 303:417–421
Bohm A, Kaiser I, Trebstein A, Henle T (2005) Heat-induced degradation of inulin. Eur Food Res Technol 220:466–471
Kays SJ, Nottingham SF (2008) Biology and chemistry of jerusalem artichoke. CRC Press, Taylor & Francis Group, Boca Raton
Roberfroid M (2005) Inulin-type of fructans. CRC Press, Boca Raton
Ricca E, Calabro V, Curcio S, Iorio G (2007) Fructose production by chicory inulin enzymatic hydrolysis: a kinetic study and reaction mechanism. Process Biochem 2007(44):466–470
Hu Z, Liu B, Zhang Z, Chen L (2013) Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by acidic ionic liquids in dimethyl sulfoxide. Ind Crop Prod 50:264–269
Wu S, Fan H, Xie Y, Cheng Y, Wang Q, Zhang Z et al (2010) Effect of CO2 on conversion of inulin to 5-hydroxymethylfurfural and propylene oxide to 1, 2-propanediol in water. Green Chem 12:1215–1219
Benvenuti F, Carlini C, Patrono P, Raspolli Galletti AM, Sbrana G, Massucci MA et al (2000) Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates. Appl Catal A Gen 193:147–153
Carlini C, Patrono P, Gallettia AMR, Sbrana G (2004) Heterogeneous catalysts based on vanadyl phosphate for fructose dehydration to 5-hydroxymethyl-2-furaldehyde. Appl Catal A Gen 2004(275):111–118
Wu Q, Yan Y, Zhang Q, Lu J, Yang Z, Zhang Y et al (2013) Catalytic dehydration of carbohydrates on in situ exfoliatable layered niobic acid in an aqueous system under microwave irradiation. Chem Sustain Chem 6:820–825
Carlini C, Giuttari M, Galletti AMR, Sbrana G, Armaroli T, Busca G (1999) Selective saccharides dehydration to 5-hydroxymethyl-2-furaldehyde by heterogeneous niobium catalysts. Appl Catal A Gen 183:295–302
Akiya N, Savage PE (2002) Roles of water for chemical reactions in high-temperature water. Chem Rev 102:2725–2750
Oomori T, Khajavi SH, Kimura Y, Adachi S, Matsuno R (2004) Hydrolysis of disaccharides containing glucose residue in subcritical water. Biochem Eng J 2004(18):143–147
Kruse A, Dinjus E (2007) Hot compressed water as reaction medium and reactant properties and synthesis reactions. J Supercrit Fluids 39:362–380
Hansen TS, Woodley JM, Riis A (2009) Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose. Carbohydr Res 344:2568–2572
Qi X, Watanabe M, Aida TM, Smith RL Jr (2008) Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating. Catal Commun 9:2244–2249
Ranoux A, Djanashvili K, Arends IWCE, Hanefeld U (2013) 5-Hydroxymethylfurfural synthesis from hexoses is autocatalytic. ACS Catal 3:760–763
Harvey DJ (1996) Matrix-assisted laser desorption/ionisation mass spectrometry of oligosaccharides and glycoconjugates. J Chromatogr A 720:429–446
Kazmaier T, Roth S, Zapp J, Harding M, Kuhn R (1998) Quantitative analysis of malto-oligosaccharides by MALDI-TOF mass spectrometry, capillary electrophoresis and anion exchange chromatography. Fresenius J Anal Chem 361:473–478
Anan’ina NA, Andreeva OA, Mycots LP (2009) Standarization of inulin extracted from dahlia single tubers and some physicochemical properties of inulin. Pharm Chem J 43:157–158
Khajavi SH, Kimura Y, Oomori T, Matsuno R, Adachi S (2005) Degradation kinetics of monosaccharides in subcritical water. J Food Eng 68:309–313
Aida TM, Tajima K, Watanabe M, Saito Y, Kuroda K, Nonaka T et al (2007) Reactions of d-fructose in water at temperatures up to 100 MPa. J Supercrit Fluids 42:110–119
Aida TM, Sato Y, Watanabe M, Tajima K, Nonaka T, Hattori H et al (2007) Dehydration of d-glucose in high temperature water at pressures up to 80 MPa. J Supercrit Fluids 40:381–388
Brunner G (2009) Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J Supercrit Fluids 47:373–381
Jin FM, Zhou ZY, Moriya T, Kishida H, Higashijima H, Enomoto H (2005) Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environ Sci Technol 39:1893–1902
Asghari SF, Yoshida H (2006) Acid-catalyzed production of 5-hydroxymethyl furfural from d-fructose in subcritical water. Ind Eng Chem Res 45:2163–2173
Fachri BA, Abdilla RM, Rasrendra CB, Heeres HJ (2015) Experimental and modeling studies on the acid-catalysed conversion of inulin to 5-hydroxymethylfurfural in water. Chem Eng Res Des (submitted)
De S, Dutta S, Saha B (2011) Microwave assisted conversion of carbohydrates and biopolymers to 5-hydroxymethylfurfural with aluminium chloride catalyst in water. Green Chem 12:1215–1219
Li Y, Lu X, Yuan L, Liu X (2009) Fructose decomposition kinetics in organic acids-enriched high temperature liquid water. Biomass Bioenergy 33:1182–1187
http://www.grandviewresearch.com/press-release/global-inulin-market . Accessed April 26, 2015
http://www.eblex.org.uk/wp/wp-content/uploads/2013/12/BRPplusChicory-and-Plantain031213.pdf . Accessed April 26, 2015
Rapp K (1988) Process for preparing pure 5-hydroxymethylfuraldehyde. US Patent No. 4740605