Expandable intramedullary nailing and platelet rich plasma to treat long bone non-unions
Tóm tắt
Roentgenographic and functional outcomes of expandable self locking intramedullary nailing and platelet rich plasma (PRP) gel in the treatment of long bone non-unions are reported.
Twenty-two patients suffering from atrophic diaphyseal long bone non-unions were enrolled in the study. Patients were treated with removal of pre-existing hardware, decortication of non-union fragments, and fixation of pseudoarthrosis with expandable intramedullary nailing (Fixion™, Disc’O Tech, Tel Aviv, Israel). At surgery, PRP was placed in the pseudoarthrosis rim.
The thirteen-month follow-up showed 91% (20/22 patients) of patients attaining bony union. The average time to union was 21.5 weeks. No infection, neurovascular complication, rotational malalignment, or limb shortening >4 mm were observed. The healing rate of non-unions was comparable to that observed in previous studies but with a lower complication frequency.
The combined use of self locking intramedullary nailing and PRP in the management of atrophic diaphyseal long bone non-unions seems to produce comparable results with less complications than previously reported. Further data are warranted to investigate the single contribution of PRP gel and Fixion nail.
Từ khóa
Tài liệu tham khảo
Lemaire R (2000) Management of non-unions. An overview. In: Duparc J (ed) Surgical techniques in orthopaedics and traumatology. EFORT 1. Elsevier, Paris 55-030-F-10
Rosen H (1998) Non-union and Malunion. In: Browner BD, Jupiter JB, Levine AM, Trafton PG (eds) Skeletal Trauma, vol 1, 2nd edn. WB Saunders, Philadelphia, pp 619–660
Schmitt JM, Hwang K, Winn SR, Hollinger JO (1999) Bone morphogenetic proteins: An update on basic biology and clinical relevance. J Orthop Res 17:269–278
Lamerigts NM, Buma P, Aspenberg P, Schreurs BW, Slooff TJ (1999) Role of growth factors in the incorporation of unloaded bone allografts in the goat. Clin Orthop Relat Res 368:260–270
Bostrom MP, Asnis P (1998) Transforming growth factor beta in fracture repair. Clin Orthop Relat Res 355S:124–131
Peng H, Usas A, Olshanski A, Ho AM, Gearhart B, Cooper GM, Huard J (2005) VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res 20:2017–2027
Geiger F, Bertram H, Berger I, Lorenz H, Wall O, Eckhardt C, Simank HG, Richter W (2005) Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res 20:2028–2035
Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR (1998) Platelet rich plasma: growth factor enhancement for bone grafts. Oral Surg 85:638–646
Bhandari M, Guyatt GH, Swiontkowski MF, Tornetta P, Sprague S, Schemitsch EH (2002) A lack of consensus in the assessment of fracture healing among orthopaedic surgeons. Orthop Trauma 16:562–566
Eppley BL, Woodell JE, Higgins J (2004) Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. Plast Reconstr Surg 114:1502–1508
Gaffney PJ, Edgell TA (1998) The second British Standard for Batroxobin (moojeni). Tromb Haemost 80:1037–1038
Daccarett M, Walz BM, Seligson D (2004) Use of an expanadable nail in the treatment of non-union fractures of the femur, tibia, and humerus. Osteo Trauma Care 12:130–134
Ahlo A, Ekeland A, Stromsoe K (1993) Non-union of tibial shaft fractures treated with locked intramedullary nailing without bone grafting. J Trauma 34:62–67
Moed BR, Watson JT (1995) Intramedullary nailing of aseptic tibial non-unions without the use of the fracture table. J Orthop Trauma 9:128–134
Pihlajamaki HK, Salminen ST, Bostman OM (2002) The treatment of non-unions using intramedullary nailing of femoral shaft fractures. J Orthop Trauma 16:394–402
Kempf I, Grosse A, Rigault P (1986) The treatment of non-infected pseudoarthrosis of the femur and tibia with locked intramedullary nailing. Clin Orthop Relat Res 212:142–154
Blum J, Janzing H, Gahr R (2001) Clinical performance of a new medullar nail. J Orthopaed Traumatol 342–349
Lepore S, Capuano N, Romano G (2000) Preliminary clinical and radiographic results with the Fixion Intramedullary Nail: an inflatable self-locking system for long bone fracture. J Orthopaed Traumatol 3:135–140
Franck WM, Olivieri M, Jannasch O, Hennig FF (2002) An expandable nailing system for the management of pathological humerus fractures. Arch Orthop Trauma Surg 122:400–405
Court-Brown CM, McQueen MM, Quaba AA, Christie J (1991) Locked intramedullary nailing of open tibial fractures. J Bone Joint Surg 73B:959–964
Heim D, Regazzoni P, Tsakiris DA, Aebi T, Schlegel U, Marbet GA, Perren SM (1995) Intramedullary nailing and pulmonary embolism: does unreamed nailing prevent embolization? An in vitro study in rabbit. J Trauma 38:899–906
Bonatus T, Olson SA, Lee S, Chapmann MW (1997) Non reamed locking intramedullary nailing for open fractures of the tibia. Clin Orthop Relat Res 339:58–64
Koval KJ, Clapper MF, Brumback RJ, Ellison PS Jr, Poka A, Bathon GH, Burgess AR (1991) Complications of reamed intramedullary nailing of the tibia. J Orthop Trauma 5:184–189
Klein MP, Rahn BA, Frigg R, Kessler S, Perren SM (1990) Reaming versus non-reaming in medullary nailing: Interference with cortical circulation of the canine tibia. Arch Ortop Trauma Surg 109:314–316
Schemitsch EH, Kowalski MJ, Swiontkowski MF, Senft D (1994) Cortical bone blood flow in reamed and unreamed locked intra medullary nailing: a fractured tibia model in sheep. J Orthop Trauma 8:373–382