Exosomes and Microvesicles: Identification and Targeting By Particle Size and Lipid Chemical Probes

ChemBioChem - Tập 15 Số 7 - Trang 923-928 - 2014
Noah Kastelowitz1, Hang Yin1
1Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80303 (USA).

Tóm tắt

Abstract

Exosomes and microvesicles are two classes of submicroscopic vesicle released by cells into the extracellular space. Collectively referred to as extracellular vesicles, these membrane containers facilitate important cell–cell communication by carrying a diverse array of signaling molecules, including nucleic acids, proteins, and lipids. Recently, the role of extracellular vesicle signaling in cancer progression has become a topic of significant interest. Methods to detect and target exosomes and microvesicles are needed to realize applications of extracellular vesicles as biomarkers and, perhaps, therapeutic targets. Detection of exosomes and microvesicles is a complex problem as they are both submicroscopic and of heterogeneous cellular origins. In this Minireview, we highlight the basic biology of extracellular vesicles, and address available biochemical and biophysical detection methods. Detectible characteristics described here include lipid and protein composition, and physical properties such as the vesicle membrane shape and diffusion coefficient. In particular, we propose that detection of exosome and microvesicle membrane curvature with lipid chemical probes that sense membrane shape is a distinctly promising method for identifying and targeting these vesicles.

Từ khóa


Tài liệu tham khảo

10.1055/s-0030-1267043

10.1007/s00109-013-1020-6

10.1373/clinchem.2003.028506

10.1038/ki.2010.278

10.1080/09537100310001649885

10.1038/nrd3978

10.1083/jcb.201211138

10.1083/jcb.201212113

10.1016/j.bbagen.2012.03.017

10.1007/s00018-011-0689-3

10.1007/s12020-012-9839-0

10.1126/science.308.5730.1862

10.1111/jth.12268

10.1182/blood-2013-04-460139

10.4161/cc.8.13.8988

10.1042/bj2240285

10.1152/physiol.00029.2004

10.1182/blood.V94.11.3791

10.1083/jcb.97.2.329

10.1074/jbc.M301642200

10.1042/bj20031594

10.1126/science.1153124

Denzer K., 2000, J. Cell Sci., 113, 19, 10.1242/jcs.113.19.3365

Théry C., 2006, Current Protocols in Cell Biology, 3.22

10.1038/nrm1784

10.1016/j.bpj.2010.06.074

10.1039/c3ra42332h

10.1038/nchembio.213

Suetsugu A., 2012, Adv. Drug Delivery Rev., 64, 1

10.1038/ncomms1180

10.1158/0008-5472.CAN-10-4455

10.1053/j.gastro.2005.03.045

10.1038/bjc.2011.595

10.3816/CLC.2009.n.006

10.1371/journal.pone.0005219

10.1016/S0959-8049(02)00596-8

10.1111/j.1538-7836.2010.04074.x

10.1016/j.nano.2011.04.003

10.1002/cyto.a.20354

10.1038/nprot.2012.065

10.1111/j.1423-0410.2008.01151.x

10.1113/jphysiol.2013.264069

Howard J., 2001, Mechanics of Motor Proteins and the Cytoskeleton

10.1016/j.tcb.2008.11.003

10.1093/intimm/dxh267

10.1007/s00281-011-0250-3

10.1002/elps.201000598

10.3402/jev.v2i0.20920

10.1016/j.devcel.2012.10.009

10.1146/annurev-biochem-052809-155121

10.1016/j.cossms.2013.06.002

10.1038/nrm2328

10.1002/(SICI)1097-0320(19980101)31:1<1::AID-CYTO1>3.0.CO;2-R

10.1016/j.jim.2011.06.024

10.1016/j.canlet.2008.12.028

10.1042/bj3620001

10.1021/cb300429e

10.1021/cb3002705

10.1039/c3mb70109c

10.1016/j.febslet.2010.01.053

10.1073/pnas.0805182105

10.1038/nsmb1194

10.1083/jcb.201011118