Kết quả tồn tại cho các bao hàm tích phân phân số thông qua lựa chọn phi tuyến cho các ánh xạ co lại

Ahmed Alsaedi1, Sotiris K. Ntouyas2, Bashir Ahmad1, Hamed Alsulami1
1Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2Department of Mathematics, University of Ioannina, Ioannina, 451 10, Greece

Tóm tắt

Tóm tắt Trong bài báo này, một kết quả tồn tại mới được thu được cho một bài toán đa trị phân số với các điều kiện biên tích phân phân số bằng cách áp dụng một kết quả về điểm cố định kiểu Krasnoselskii cho các ánh xạ đa trị do Petryshyn và Fitzpatrick đưa ra [Trans. Am. Math. Soc. 194:1-25, 1974]. Trường hợp của các ánh xạ đa trị liên tục bán dưới cũng được thảo luận. Một ví dụ để minh họa kết quả chính của chúng tôi được trình bày. MSC:34A60, 34A08.

Từ khóa

#tồn tại #bài toán đa trị #ánh xạ co lại #tích phân phân số #điều kiện biên

Tài liệu tham khảo

Samko SG, Kilbas AA, Marichev OI: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Yverdon; 1993.

Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999.

Kilbas AA, Srivastava HM, Trujillo JJ North-Holland Mathematics Studies 204. In Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.

Baleanu D, Diethelm K, Scalas E, Trujillo JJ Series on Complexity, Nonlinearity and Chaos. In Fractional Calculus Models and Numerical Methods. World Scientific, Boston; 2012.

Henderson J, Ouahab A: Fractional functional differential inclusions with finite delay. Nonlinear Anal. 2009, 70: 2091-2105. 10.1016/j.na.2008.02.111

Chang Y-K, Nieto JJ: Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Model. 2009, 49: 605-609. 10.1016/j.mcm.2008.03.014

Benchohra M, Hamani S, Ntouyas SK: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 2009, 71: 2391-2396. 10.1016/j.na.2009.01.073

Cernea A: On the existence of solutions for nonconvex fractional hyperbolic differential inclusions. Commun. Math. Anal. 2010, 9(1):109-120.

Agarwal RP, Benchohra M, Hamani S: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 2010, 109: 973-1033. 10.1007/s10440-008-9356-6

Ahmad B, Ntouyas SK: Some existence results for boundary value problems of fractional differential inclusions with non-separated boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2010., 2010: Article ID 71

Ahmad B, Ntouyas SK, Alsaedi A: New existence results for nonlinear fractional differential equations with three-point integral boundary conditions. Adv. Differ. Equ. 2011., 2011: Article ID 107384

Baleanu D, Mustafa OG, O’Regan D: A Nagumo-like uniqueness theorem for fractional differential equations. J. Phys. A, Math. Theor. 2011., 44(39): Article ID 392003

Ahmad B, Ntouyas SK: Nonlinear fractional differential equations and inclusions of arbitrary order and multi-strip boundary conditions. Electron. J. Differ. Equ. 2012., 2012: Article ID 98

Ahmad B, Nieto J: Sequential fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 2012, 64: 3046-3052. 10.1016/j.camwa.2012.02.036

Sudsutad W, Tariboon J: Existence results of fractional integro-differential equations with m -point multi-term fractional order integral boundary conditions. Bound. Value Probl. 2012., 2012: Article ID 94

Wang G, Ahmad B, Zhang L, Agarwal RP: Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 2013, 249: 51-56.

Babakhani A, Baleanu D, Agarwal RP: The existence and uniqueness of solutions for a class of nonlinear fractional differential equations with infinite delay. Abstr. Appl. Anal. 2013., 2013: Article ID 592964

Ntouyas SK: Boundary value problems for nonlinear fractional differential equations and inclusions with nonlocal and fractional integral boundary conditions. Opusc. Math. 2013, 33: 117-138. 10.7494/OpMath.2013.33.1.117

Petryshyn WV, Fitzpatric PM: A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact maps. Trans. Am. Math. Soc. 1974, 194: 1-25.

Lasota A, Opial Z: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 1965, 13: 781-786.

Kuratowski K, Ryll-Nardzewski C: A general theorem on selectors. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 1965, 13: 397-403.

Gorniewicz L: Topological Fixed Point Theory of Multivalued Mappings. Springer, Dordrecht; 2006.

Deimling K: Multivalued Differential Equations. de Gruyter, Berlin; 1992.

Bressan A, Colombo G: Extensions and selections of maps with decomposable values. Stud. Math. 1988, 90: 69-86.

Frigon M: Théorèmes d’existence de solutions d’inclusions différentielles. NATO ASI Series C 472. In Topological Methods in Differential Equations and Inclusions. Edited by: Granas A, Frigon M. Kluwer Academic, Dordrecht; 1995:51-87.

Granas A, Dugundji J: Fixed Point Theory. Springer, New York; 2005.