Existence of least energy nodal solution for a Schrödinger–Poisson system in bounded domains

Claudianor O. Alves1, Marco A. S. Souto1
1Universidade Federal de Campina Grande and Unidade Acadêmica de Matemática e Estatística, Campina Grande, PB, CEP:58429-900, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alves C.O.: Multiplicity of multi-bump type nodal solutions for a class of elliptic problems in $${{\mathbb{R}}^{N} }$$ R N . Top. Meth. Nonlinear Anal. 34, 231–250 (2009)

Alves C.O., Soares S.H.M.: On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations. J. Math. Anal. Appl. 296, 563–577 (2004)

Alves C.O., Soares S.H.M.: Nodal solutions for singularly perturbed equations with critical exponential growth. J. Differ. Equ. 234, 464–484 (2007)

Ambrosetti A., Ruiz R.: Multiple bound states for the Schrödinger–Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008)

Azzollini A., Pomponio A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)

Bartsch T., Weth T., Willem M.: Partial symmetry of least energy nodal solution to some variational problems. J. D’Analyse Mathématique 1, 1–18 (2005)

Bartsch T., Weth T.: Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 259–281 (2005)

Bartsch T., Liu Z., Weth T.: Sign changing solutions of superlinear Schrödinger equations. Comm. Partial Differ. Equ. 29, 25–42 (2004)

Benci V., Fortunato D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Top. Meth. Nonlinear Anal. 11, 283–293 (1998)

Berestycki H., Lions P.L.: Nonlinear scalar field equations I—existence of a ground state. Arch. Rat. Mech. Anal. 82, 313–346 (1983)

Bokanowski, O., Mauser, N.J.: Local approximation of the Hartree–Fock exchange potential: a deformation approach. M3AS 9, 941–961 (1999)

Castro A., Cossio J., Neuberger J.: A sign-changing solution for a superlinear Dirichlet problem. Rocky Mt. J. Math. 27(4), 1041–1053 (1997)

Cerami G., Vaira G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)

Coclite G.M.: A multiplicity result for the nonlinear Schrödinger–Maxwell equations. Commun. Appl. Anal. 7, 417–423 (2003)

D’Aprile T., Mugnai D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations. Proc. R. Soc. Edinb. Sect. A 134, 893–906 (2004)

D’Aprile T., Mugnai D.: Non-existence results for the coupled Klein–Gordon–Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)

d’Avenia P.: Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations. Adv. Nonlinear Stud. 2, 177–192 (2002)

Ianni I., Vaira G.: On concentration of positive bound states for the Schrödinger–Poisson problem with potentials. Adv. Nonlinear Stud. 8, 573–595 (2008)

Ianni, I.: Sign-Changing Radial Solutions for the Schrödinger–Poisson–Slater Problem. arXiv:1108.2803v1

Kikuchi H.: On the existence of a solution for elliptic system related to the Maxwell–Schrödinger equations. Nonlinear Anal. 67, 1445–1456 (2007)

Kim S., Seok J.: On nodal solutions of the Nonlinear Schrödinger–Poisson equations. Comm. Cont. Math. 14, 12450041–12450057 (2012)

Miranda C.: Un’ osservazione su un teorema di Brouwer. Bol. Un. Mat. Ital. 3, 5–7 (1940)

Mauser N.J.: The Schrödinger–Poisson- $${X_\alpha}$$ X α equation. Appl. Math. Lett. 14, 759–763 (2001)

Pisani L., Siciliano G.: Note on a Schrödinger–Poisson system in a bounded domain. Appl. Math. Lett. 21, 521–528 (2008)

Ruiz D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

Ruiz D., Siciliano G.: A note on the Schrödinger–Poisson–Slater equation on bounded domains. Adv. Nonlinear Stud. 8, 179–190 (2008)

Siciliano G.: Multiple positive solutions for a Schrödinger–Poisson–Slater system. J. Math. Anal. Appl. 365, 288–299 (2010)

Sánchez O., Soler J.: Long-time dynamics of the Schrödinger–Poisson–Slater system. J. Stat. Phys. 114, 179–204 (2004)

Zhao F., Zhao L.: Positive solutions for Schrödinger–Poisson equations with a critical exponent. Nonlinear Anal. 70, 2150–2164 (2009)

Zou W.: Sign-Changing Critical Point Theory. Springer, Berlin (2008)