Existence domain of electrostatic solitary waves in the lunar wake

Physics of Plasmas - Tập 25 Số 3 - 2018
R. Rubia1, S. V. Singh1, G. S. Lakhina1
1Indian Institute of Geomagnetism, Navi Mumbai, India.

Tóm tắt

Electrostatic solitary waves (ESWs) and double layers are explored in a four-component plasma consisting of hot protons, hot heavier ions (He++), electron beam, and suprathermal electrons having κ-distribution using the Sagdeev pseudopotential method. Three modes exist: slow and fast ion-acoustic modes and electron-acoustic mode. The occurrence of ESWs and their existence domain as a function of various plasma parameters, such as the number densities of ions and electron beam, the spectral index, κ, the electron beam velocity, the temperatures of ions, and electron beam, are analyzed. It is observed that both the slow and fast ion-acoustic modes support both positive and negative potential solitons as well as their coexistence. Further, they support a “forbidden gap,” the region in which the soliton ceases to propagate. In addition, slow ion-acoustic solitons support the existence of both positive and negative potential double layers. The electron-acoustic mode is only found to support negative potential solitons for parameters relevant to the lunar wake plasma. Fast Fourier transform of a soliton electric field produces a broadband frequency spectrum. It is suggested that all three soliton types taken together can provide a good explanation for the observed electrostatic waves in the lunar wake.

Từ khóa


Tài liệu tham khảo

1998, Phys. Rev. Lett., 81, 826, 10.1103/PhysRevLett.81.826

1999, J. Geophys. Res., 104, 28709, 10.1029/1999JA900284

1997, J. Geophys. Res., 102, 14439, 10.1029/97JA00684

1994, Geophys. Res. Lett., 21, 2915, 10.1029/94GL01284

2003, Geophys. Res. Lett., 30, 1326, 10.1029/2002GL016319

1998, Geophys. Res. Lett., 25, 2929, 10.1029/98GL02111

2015, Geophys. Res. Lett., 42, 6273, 10.1002/2015GL063946

2017, Geophys. Res. Lett., 44, 4575, 10.1002/2017GL074026

1999, Ann. Geophys., 17, 307, 10.1007/s00585-999-0307-y

2013, J. Geophys. Res.—Space Phys., 118, 591, 10.1002/jgra.50102

2010, Geophys. Res. Lett., 37, L19204, 10.1029/2010GL044529

1996, Geophys. Res. Lett., 23, 1,255, 10.1029/96GL01069

2011, Planet. Space Sci., 59, 661, 10.1016/j.pss.2011.01.012

2012, J. Geophys. Res., 117, A03106, 10.1029/2011JA017364

2017, J. Geophys. Res. Space Phys., 122, 9134, 10.1002/2017JA023972

Leontovich, 1966, Cooperative phenomena and shock waves in collisionless plasmas, Reviews of Plasma Physics 4, 23

1966, Phys. Rev. Lett., 17, 996, 10.1103/PhysRevLett.17.996

1977, J. Phys. Soc. Jpn., 43, 1819, 10.1143/JPSJ.43.1819

1975, Plasma Phys., 17, 1025, 10.1088/0032-1028/17/12/002

1979, Phys. Scr., 20, 317, 10.1088/0031-8949/20/3-4/004

1980, Phys. Lett. A, 76, 251, 10.1016/0375-9601(80)90483-1

1981, Phys. Lett., 81A, 347, 10.1016/0375-9601(81)90086-4

1985, Phys. Fluids, 28, 2439, 10.1063/1.865250

1987, Phys. Fluids, 30, 2708, 10.1063/1.866036

1991, Geophys. Res. Lett., 18, 155, 10.1029/90GL02677

1997, Phys. Plasmas., 4, 2139, 10.1063/1.872378

2001, Planet. Space Sci., 49, 107, 10.1016/S0032-0633(00)00126-4

2005, Space Sci. Rev., 121, 299, 10.1007/s11214-006-4148-7

2005, Phys. Plasmas., 12, 042901, 10.1063/1.1868733

2007, Phys. Plasmas, 14, 052305, 10.1063/1.2732176

2008, Phys. Plasmas, 15, 062903, 10.1063/1.2930469

2008, Nonlinear Processes Geophys., 15, 903, 10.5194/npg-15-903-2008

2009, J. Geophys. Res., 114, A09212, 10.1029/2009JA014306

2009, Phys. Plasmas, 16, 062903, 10.1063/1.3143036

2010, Phys. Plasmas, 17, 032310, 10.1063/1.3322895

2010, EPL, 91, 15001, 10.1209/0295-5075/91/15001

2010, Plasma Phys. Controlled Fusion, 52, 075009, 10.1088/0741-3335/52/7/075009

2010, Phys. Plasmas, 17, 124502, 10.1063/1.3522777

2011, Phys. Scr., 84, 025507, 10.1088/0031-8949/84/02/025507

2011, Phys. Plasmas., 18, 122306, 10.1063/1.3671955

2011, Nonlinear Processes Geophys., 18, 627634, 10.5194/npg-18-627-2011

2012, Phys. Plasmas., 19, 082314, 10.1063/1.4743015

2012, Phys. Plasmas, 19, 122308, 10.1063/1.4771574

2012, Phys. Plasmas, 19, 072320, 10.1063/1.4737895

2012, Phys. Plasmas, 19, 122301, 10.1063/1.4769174

2013, Phys. Plasmas, 20, 012306, 10.1063/1.4776710

2013, Phys. Plasmas., 20, 032307, 10.1063/1.4795745

2014, Phys. Plasmas, 21, 102301, 10.1063/1.4896707

2014, Phys. Plasmas., 21, 082104, 10.1063/1.4891853

2014, Phys. Plasmas, 21, 062311, 10.1063/1.4884791

2015, Phys. Plasmas, 22, 082312, 10.1063/1.4928884

2015, Phys. Plasmas, 22, 032313, 10.1063/1.4916319

2015, Sol. Phys., 290, 3033, 10.1007/s11207-015-0773-1

2016, Phys. Plasmas, 23, 062902, 10.1063/1.4953892

1957, Phys. Rev., 108, 546, 10.1103/PhysRev.108.546

1982, Phys. Scr., T2/1, 228, 10.1088/0031-8949/1982/T2A/030

2000, Phys. Plasmas, 7, 4831, 10.1063/1.1316767

2015, Phys. Plasmas, 22, 042301, 10.1063/1.4916774

1996, J. Geophys. Res., 101, 2685, 10.1029/95JA03145

1999, Geophys. Res. Lett., 26, 1821, 10.1029/1999GL900435

1999, Phys. Rev. Lett., 83, 2344, 10.1103/PhysRevLett.83.2344

2003, J. Geophys. Res., 108, 8007, 10.1029/2002JA009436

2001, J. Geophys. Res., 106, 19013, 10.1029/2000JA000355

2004, Nonlinear Processes Geophys., 11, 219, 10.5194/npg-11-219-2004