Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự tồn tại và tính duy nhất của các nghiệm ổn định của một phương trình logistic khuếch tán phi địa phương
Tóm tắt
Trong bài báo này, chúng tôi xem xét một mô hình động học của sinh học quần thể theo kiểu cổ điển Fisher, nhưng tương tác cạnh tranh giữa các cá thể là phi địa phương. Chúng tôi nghiên cứu sự tồn tại, tính duy nhất và độ ổn định của nghiệm trạng thái ổn định của bài toán phi địa phương trên một khoảng giới hạn với điều kiện biên Dirichlet đồng nhất.
Từ khóa
#sinh học quần thể #mô hình động học #phương trình logistic #điều kiện biên Dirichlet #tồn tại và tính duy nhấtTài liệu tham khảo
Allegretto, W., Nistri, P.: On a class of nonlocal problems with applications to mathematical biology. In: (Halifax, NS, 1997) Differential equations with applications to biology, pp. 1–14, Fields Inst. Commun. 21, Amer. Math. Soc., Providence, RI (1999)
Apreutesei N., Ducrot A., Volpert V.: Travelling waves for integro-differential equations in population dynamics. Discrete Contin. Dyn. Syst. Ser. B 11, 541–561 (2009)
Bates, P.W.: On some nonlocal evolution equations arising in materials science. In nonlinear dynamics and evolution equations, pp. 13–52. Fields Inst. Commun. 48, Amer. Math. Soc., Providence, RI (2006)
Bates, P., Chen, F.: Periodic traveling waves for a nonlocal integro-differential model. Electron. J. Differ. Equ. 26, 19 (1999)
Bates P.W., Chmaj A.: An integrodifferential model for phase transitions: stationary solutions in higher space dimensions. J. Statist. Phys. 95, 1119–1139 (1999)
Bates P.W., Fife P.C., Ren X., Wang X.: Traveling waves in a convolution model for phase transitions. Arch. Rational Mech. Anal. 138, 105–136 (1997)
Bates P.W., Zhao G.: Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal. J. Math. Anal. Appl. 332, 428–440 (2007)
Crandall M.G., Rabinowitz P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)
Davidson F.A., Dodds N.: Spectral properties of non-local differential operators. Appl. Anal. 85(6-7), 717–734 (2006)
Davidson, F.A., Dodds, N.: Spectral properties of non-local uniformly-elliptic operators. Electron. J. Differ. Equ. 126, 15 (2006)
Dancer E.N.: On the structure of solutions of nonlinear eigenvalve problems. Indiana Univ. Math. J. 23, 1069–1076 (1974)
Davidson F.A., Dodds N.: Existence of positive solutions due to non-local interactions in a class of nonlinear boundary value problems. Methods Appl. Anal. 14(1), 15–27 (2007)
Fisher R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)
Freitas P.: Bifurcation and stability of stationary solutions of nonlocal scalar reaction-diffusion equations. Jour. Dyna. Diff. Equa. 6, 613–628 (1994)
Freitas P.: A nonlocal Sturm-Liouville eigenvalue problem. Proc. Royal Soc. Edin. 124A, 169–188 (1994)
Freitas, P.: Nonlocal reaction-diffusion equations. In: (Halifax, NS, 1997) Differential equations with applications to biology, pp. 187–204. Fields Inst. Commun. 21, Amer. Math. Soc., Providence, RI, 1999
Fuentes M.A., Kuperman M.N., Kenkre V.M.: Nonlocal interaction effects on pattern formation in population dynamics. Phys. Rev. Lett. 91, 158104 (2003)
Fuentes M.A., Kuperman M.N., Kenkre V.M.: Analytical considerations in the study of spatial patterns arising from nonlocal interaction effects. J. Phys. Chem. B 108, 10505–10508 (2004)
Furter J., Grinfeld M.: Local vs. nonlocal interactions in population dynamics. J. Math. Biol. 27, 65–80 (1989)
Gidas B., Ni W.-M., Nirenberg L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209–243 (1979)
Gourley S.A.: Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol. 41, 272–284 (2000)
Gourley, S.A., Wu, J.: Delayed non-local diffusive systems in biological invasion and disease spread. In: Nonlinear dynamics and evolution equations, pp. 137–200. Fields Inst. Commun. 48 Amer. Math. Soc., Providence, RI (2006)
Huang W.: Uniqueness of the bistable traveling wave for mutualist species. J. Dynam. Differ. Equ. 13(1), 147–183 (2001)
Kenkre V.M.: Results from variants of the fisher equation in the study of epidemics and bacteria. Physica A 342, 242–248 (2004)
Kenkre V.M., Kuperman M.N.: Applicability of the Fisher equation to bacterial population dynamics. Phys. Rev. E 67, 051921 (2003)
Kolmogoroff A., Petrovsky I., Piscounoff N.: Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem. (French) Moscow Univ. Bull. Math. 1, 1–25 (1937)
Kot M.: Elements of mathematical ecology. Cambridge University Press, Cambridge (2001)
Liu P., Shi J.P., Wang Y.W.: Imperfect transcritical and pitchfork bifurcations. J. Func. Anal. 251(2), 573–600 (2007)
Murray, J.D.: Mathematical biology. Third edition. Interdisciplinary Applied Mathematics. 17, 18 I. An introduction. II. Spatial models and biomedical applications. Springer, New York (2003)
Rabinowitz, P.H.: A nonlinear Sturm-Liouville theorem. Japan-United States seminar on ordinary differential and functional equations (Kyoto, 1971), pp. 182–192. Lecture notes in Math. 243, Springer, Berlin (1971)
Rabinowitz P.H.: Some global results for nonlinear eigenvalue problems. J. Func. Anal. 7, 487–513 (1971)
Shi J.: Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models. Front. Math. in China 4, 407–424 (2009)
Shi J., Wang X.: On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ. 246(7), 2788–2812 (2009)
So J., Wu J., Zou X.: A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457, 1841–1853 (2001)