Exceptional Visible‐Light‐Driven Cocatalyst‐Free Photocatalytic Activity of g‐C3N4 by Well Designed Nanocomposites with Plasmonic Au and SnO2

Advanced Energy Materials - Tập 6 Số 21 - 2016
Amir Zada1, Muhammad Humayun1, Fazal Raziq1, Xuliang Zhang1, Yang Qu1, Linlu Bai1, Chuanli Qin1, Liqiang Jing1, Honggang Fu1
1Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University); Ministry of Education; School of Chemistry and Materials Science; International Joint Research Center for Catalytic Technology; Harbin 150080 P. R. China

Tóm tắt

In this work, plasmonic Au/SnO2/g‐C3N4 (Au/SO/CN) nanocomposites have been successfully synthesized and applied in the H2 evolution as photocatalysts, which exhibit superior photocatalytic activities and favorable stability without any cocatalyst under visible‐light irradiation. The amount‐optimized 2Au/6SO/CN nanocomposite capable of producing approximately 770 μmol g−1 h−1 H2 gas under λ > 400 nm light illumination far surpasses the H2 gas output of SO/CN (130 μmol g−1), Au/CN (112 μmol g−1 h−1), and CN (11 μmol g−1 h−1) as a contrast. In addition, the photocatalytic activity of 2Au/6SO/CN maintains unchanged for 5 runs in 5 h. The enhanced photoactivity for H2 evolution is attributed to the prominently promoted photogenerated charge separation via the excited electron transfer from plasmonic Au (≈520 nm) and CN (470 nm > λ > 400 nm) to SO, as indicated by the surface photovoltage spectra, photoelectrochemical IV curves, electrochemical impedance spectra, examination of formed hydroxyl radicals, and photocurrent action spectra. Moreover, the Kelvin probe test indicates that the newly aligned conduction band of SO in the fabricated 2Au/6SO/CN is indispensable to assist developing a proper energy platform for the photocatalytic H2 evolution. This work distinctly provides a feasible strategy to synthesize highly efficient plasmonic‐assisted CN‐based photocatalysts utilized for solar fuel production.

Từ khóa


Tài liệu tham khảo

10.1002/aenm.201502555

10.1126/science.aaa3145

10.1002/aenm.201200511

10.1039/C5EE01445J

10.1002/anie.201300239

10.1021/ja102866p

10.1002/aenm.201500010

10.1002/anie.201403375

10.1039/C5EE02650D

10.1002/anie.201101182

10.1021/la904023j

10.1021/ja101749y

10.1021/ja103798k

10.1002/adma.201303611

10.1039/c3gc40450a

10.1039/C6NR01491G

10.1021/ja101711j

10.1002/anie.201511764

10.1021/ja076134v

10.1039/C6NR00829A

10.1021/ja2120647

10.1002/aenm.201501496

10.1021/am201695c

10.3390/s150717313

10.1021/acs.jpcc.5b05427

10.1021/jp502677h

10.1021/acs.jpcc.5b10313

10.1021/jp500546r

10.1021/ja0315199

10.1021/cr3000626

10.1021/am403653a

10.1016/j.snb.2015.12.065

10.1021/cs4000624

10.1002/anie.201502892

10.1021/jp2069978

10.1016/j.apcatb.2015.06.035

10.1021/la904023j

10.1039/c3ta12332d

10.1021/jp077427d

10.1016/j.apcatb.2008.01.001

10.1021/ja808790p

10.1016/j.ijhydene.2014.03.248

10.1021/cs300240x

10.1002/cctc.201300949

10.1021/ja503557x

10.1021/jp911038r

10.1021/jp203566v

10.1021/ja027945w