Examining overlap and homogeneity in ASD, ADHD, and OCD: a data-driven, diagnosis-agnostic approach

Translational Psychiatry - Tập 9 Số 1
Azadeh Kushki1, Evdokia Anagnostou1, Christopher Hammill2, Pierre Duez3, Jessica Brian4, Alana Iaboni1, Russell A. Barkley5, Jennifer Crosbie5, Paul Arnold6, Jason P. Lerch2
1Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
2Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
3Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
4Department of Paediatrics, University of Toronto, Toronto, ON, Canada;
5Department of Psychiatry, University of Toronto, Toronto, ON, Canada
6Hotchkiss Brain Institute, Departments of Psychiatry & Medical Genetics, University of Calgary, Calgary, AB, Canada

Tóm tắt

AbstractThe validity of diagnostic labels of autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and obsessive compulsive disorder (OCD) is an open question given the mounting evidence that these categories may not correspond to conditions with distinct etiologies, biologies, or phenotypes. The objective of this study was to determine the agreement between existing diagnostic labels and groups discovered based on a data-driven, diagnosis-agnostic approach integrating cortical neuroanatomy and core-domain phenotype features. A machine learning pipeline, called bagged-multiview clustering, was designed to discover homogeneous subgroups by integrating cortical thickness data and measures of core-domain phenotypic features of ASD, ADHD, and OCD. This study was conducted using data from the Province of Ontario Neurodevelopmental Disorders (POND) Network, a multi-center study in Ontario, Canada. Participants (n = 226) included children between the ages of 6 and 18 with a diagnosis of ASD (n = 112, median [IQR] age = 11.7[4.8], 21% female), ADHD (n = 58, median [IQR] age = 10.2[3.3], 14% female), or OCD (n = 34, median [IQR] age = 12.1[4.2], 38% female), as well as typically developing controls (n = 22, median [IQR] age = 11.0[3.8], 55% female). The diagnosis-agnostic groups were significantly different than each other in phenotypic characteristics (SCQ: χ2(9) = 111.21, p < 0.0001; SWAN: χ2(9) = 142.44, p < 0.0001) as well as cortical thickness in 75 regions of the brain. The analyses revealed disagreement between existing diagnostic labels and the diagnosis-agnostic homogeneous groups (normalized mutual information < 0.20). Our results did not support the validity of existing diagnostic labels of ASD, ADHD, and OCD as distinct entities with respect to phenotype and cortical morphology.

Từ khóa


Tài liệu tham khảo

Ronald, A., Simonoff, E., Kuntsi, J., Asherson, P. & Plomin, R. Evidence for overlapping genetic influences on autistic and ADHD behaviours in a community twin sample. J. Child Psychol. Psychiatry Allied Discip. 49, 535–542 (2008).

Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

Rommelse, N. N. J., Franke, B., Geurts, H. M., Hartman, C. A. & Buitelaar, J. K. Shared heritability of attention-deficit/hyperactivity disorder and autism spectrum disorder. Eur. Child Adolesc. Psychiatry 19, 281–295 (2010).

Lichtenstein, P., Carlström, E., Råstam, M., Gillberg, C. & Anckarsäter, H. The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. Am. J. Psychiatry 167, 1357–1363 (2010).

Guo, W. et al. Polygenic risk score and heritability estimates reveals a genetic relationship between ASD and OCD. Eur. Neuropsychopharmacol. 27, 657–666 (2017).

Lionel, A. C. et al. Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Hum. Mol. Genet. 23, 2752–2768 (2014).

Lionel, A. C. et al. Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Sci. Transl. Med. 3, 95ra75-95ra75 (2011).

Geller, D. et al. Examining the relationship between obsessive-compulsive disorder and attention-deficit/hyperactivity disorder in children and adolescents: a familial risk analysis. Biol. Psychiatry 61, 316–321 (2007).

Ameis, S. H. et al. A diffusion tensor imaging studyin children with ADHD, autism spectrum disorder, OCD, and matched controls: distinct and non-distinct white matter disruption and dimensional brain-behavior relationships. Am. J. Psychiatry 173, 1213–1222 (2016).

Baribeau, D. A. et al. Examining and comparing social perception abilities across childhood-onset neurodevelopmental disorders. J. Am. Acad. Child Adolesc. Psychiatry 54, 479–486.e1 (2015).

Insel, T. et al. Research Domain Criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

Carlisi, C. O. et al. Comparative multimodal meta-analysis of structural and functional brain abnormalities in autism spectrum disorder and obsessive-compulsive disorder. Biol. Psychiatry. 82, 83–102 (2017).

Norman, L. J. et al. Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder: a comparative meta-analysis. JAMA Psychiatry 73, 815–825 (2016).

Anholt, G. E. et al. Autism and adhd symptoms in patients with ocd: Are they associated with specific oc symptom dimensions or oc symptom severity. J. Autism Dev. Disord. 40, 580–589 (2010).

Zandt, F., Prior, M. & Kyrios, M. Repetitive behaviour in children with high functioning autism and obsessive compulsive disorder. J. Autism Dev. Disord. 37, 251–259 (2007).

Van Der Meer, J. M. J. et al. Are autism spectrum disorder and attention-deficit/hyperactivity disorder different manifestations of one overarching disorder? Cognitive and symptom evidence from a clinical and population-based sample. J. Am. Acad. Child Adolesc. Psychiatry. 51, 1160–1172 (2012).

Bora, E. & Pantelis, C. Meta-analysis of social cognition in attention-deficit/hyperactivity disorder (ADHD): Comparison with healthy controls and autistic spectrum disorder. Psychol. Med. 46, 699–716 (2016).

Gargaro, B. A., Rinehart, N. J., Bradshaw, J. L., Tonge, B. J. & Sheppard, D. M. Autism and ADHD: How far have we come in the comorbidity debate? Neurosci. Biobehav. Rev. 35, 1081–1088 (2011).

Ruzzano, L., Borsboom, D. & Geurts, H. M. Repetitive behaviors in autism and obsessive–compulsive disorder: new perspectives from a network analysis. J. Autism Dev. Disord. 45, 192–202 (2014).

van der Plas, E., Dupuis, A., Arnold, P., Crosbie, J. & Schachar, R. Association of autism spectrum disorder with obsessive-compulsive and attention-deficit/hyperactivity traits and response inhibition in a community sample. J. Autism Dev. Disord. 46, 3115–3125 (2016).

Abramovitch, A., Dar, R., Mittelman, A. & Wilhelm, S. Comorbidity between attention deficit/hyperactivity disorder and obsessive-compulsive disorder across the lifespan. Harv. Rev. Psychiatry 23, 245–262 (2015).

Vorstman, J. A. S. et al. Autism genetics: opportunities and challenges for clinical translation. Nat. Rev. Genet. 18, 362–376 (2017).

De La Torre-Ubieta, L., Won, H., Stein, J. L. & Geschwind, D. H. Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 22, 345–361 (2016).

Gizer, I. R., Ficks, C. & Waldman, I. D. Candidate gene studies of ADHD: a meta-analytic review. Hum. Genet. 126, 51–90 (2009).

Neale, B. M. et al. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 49, 884–897 (2010).

Li, Z., Chang, Shua, Zhang, Lyan, Gao, L. & Wang, J. Molecular genetic studies of ADHD and its candidate genes: A review. Psychiatry Res. 219, 10–24 (2014).

Hawi, Z. et al. The molecular genetic architecture of attention deficit hyperactivity disorder. Mol. Psychiatry 20, 289–297 (2015).

Nestadt, G., Grados, M. & Samuels, J. F. Genetics of obsessive-compulsive disorder. Psychiatr. Clin. North Am. 33, 141–158 (2010).

Pauls, D. L., Abramovitch, A., Rauch, S. L. & Geller, D. A. Obsessive-compulsive disorder: An integrative genetic and neurobiological perspective. Nat. Rev. Neurosci. 15, 410–424 (2014).

Anagnostou, E. & Taylor, M. J. Review of neuroimaging in autism spectrum disorders: What have we learned and where we go from here. Mol. Autism. 2, 4 (2011).

Ellegood, J. et al. Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Mol. Psychiatry 20, 118–125 (2015).

Wang, J. B. et al. Inconsistency in abnormal brain activity across cohorts of ADHD-200 in children with attention deficit hyperactivity disorder. Front Neurosci. 11, 320 (2017).

Lenet, A. E. Shifting focus: from group patterns to individual neurobiological differences in attention-deficit/hyperactivity disorder. Biol. Psychiatry 82, e67 (2017).

Piras, F. et al. Widespread structural brain changes in OCD: a systematic review of voxel-based morphometry studies. Cortex 62, 89–108 (2015).

Fouche, J. P. et al. Cortical thickness in obsessive-compulsive disorder: multisite mega-analysis of 780 brain scans from six centres. Br. J. Psychiatry 210, 67–74 (2017).

Eng, G. K., Sim, K. & Chen, S. H. A. Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: An integrative review. Neurosci. Biobehav. Rev. 52, 233–257 (2015).

Bragdon, L. B. & Coles, M. E. Examining heterogeneity of obsessive-compulsive disorder: Evidence for subgroups based on motivations. J. Anxiety Disord. 45, 64–71 (2017).

Roberts, B. A., Martel, M. M. & Nigg, J. T. Are there executive dysfunction subtypes within ADHD? J. Atten. Disord. 21, 284–293 (2017).

Leung, P. & Chan, F. Neurocognitive deficits underlying attention-deficit/hyperactivity disorder (ADHD): A clustering/subgrouping analysis. Eur. Psychiatry 33, S131 (2016).

Ben-Sasson, A. & Podoly, T. Y. Sensory over responsivity and obsessive compulsive symptoms: A cluster analysis. Compr. Psychiatry 73, 151–159 (2017).

Hasanpour, H. et al. A critical appraisal of heterogeneity in Obsessive-Compulsive Disorder using symptom-based clustering analysis. Asian J. Psychiatr. 28, 89–96 (2017).

Grzadzinski, R., Huerta, M. & Lord, C. DSM-5 and autism spectrum disorders (ASDs): an opportunity for identifying ASD subtypes. Mol. Autism. 4, 12, (2013).

Lim, L. et al. Disorder-specific predictive classification of adolescents with attention deficit hyperactivity disorder (ADHD) relative to autism using structural magnetic resonance imaging. PLoS ONE. 8, e63660, (2013).

Huttenlocher, P. R. Morphometric study of human cerebral cortex development. Neuropsychologia 28, 517–527 (1990).

Sowell, E. R. Longitudinal Mapping of Cortical Thickness and Brain Growth in Normal Children. J. Neurosci. 24, 8223–8231 (2004).

Panizzon, M. S. et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb. Cortex. 19, 2728–2735 (2009).

Lord, C. et al. Autism Diagnostic Observation Schedule (ADOS). J. Autism Developmental Disord. 30, 205–223 (2000).

Lord, C., Rutter, M. & Le Couteur, A. Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 24, 659–685 (1994).

Ickowicz, A. et al. The parent interview for child symptoms: a situation-specific clinical research interview for attention-deficit hyperactivity and related disorders. Can. J. Psychiatry 51, 325–328 (2006).

Scahill, L. et al. Children’s Yale-Brown obsessive compulsive scale: reliability and validity. J. Am. Acad. Child Adolesc. Psychiatry 36, 844–852 (1997).

Rutter Bailey, A. & Lord, C. M. Social Communication Questionnaire. Los Angeles, CA. 2003.

Swanson, J. M. et al. Categorical and dimensional definitions and evaluations of symptoms of ADHD: history of the SNAP and the SWAN rating scales. Int. J. Educ. Psychol. Assess. 10, 51–70 (2012).

Park, L. S. et al. The Toronto Obsessive-Compulsive Scale: psychometrics of a dimensional measure of obsessive-compulsive traits. J. Am. Acad. Child Adolesc. Psychiatry 55, 310–318 (2016).

Sled, J. G., ZijdenbosA. P. & EvansA. C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med Imaging 17, 87–97 (1998).

Grabner, G. et al. Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Med Image Comput Comput Assist Interv. Int Conf. Med Image Comput Comput Assist Inter. 9, 58–66 (2006).

Collins, D. L., Neelin, P., Peters, T. M. & Evans, A. C. Automatic 3d intersubject registration of mr volumetric data in standardized talairach space. J. Comput Assist Tomogr. 18, 192–205 (1994).

Smith, S. M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).

Tohka, J., Zijdenbos, A. & Evans, A. Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage 23, 84–97 (2004).

Zijdenbos A., Forghani R., Evans A. In Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention, 439–448, 1998.

June, S. K. et al. Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27, 210–221 (2005).

MacDonald, D., Kabani, N., Avis, D. & Evans, A. C. Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12, 340–356 (2000).

Taylor, J. Chung M. K. 2nd IEEE Int Symp Biomed Imaging Nano to Macro (IEEE Cat No 04EX821). 432–435, 2004.

Robbins, S. M. Anatomical Standardization of the Human Brain in Euclidean 3-Space and on the Cortical 2-Manifold. Thesis. 2003.

Lyttelton, O., Boucher, M., Robbins, S. & Evans, A. An unbiased iterative group registration template for cortical surface analysis. Neuroimage 34, 1535–1544 (2007).

Boucher, M., Whitesides, S. & Evans, A. Depth potential function for folding pattern representation, registration and analysis. Med Image Anal. 13, 203–214 (2009).

Lerch, J. P. & Evans, A. C. Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24, 163–173 (2005).

Kumar, A., Rai, P. & Daume, H. Co-regularized Multi-view Spectral Clustering. Adv. Neural Inf. Process Syst. 24, 1413–1421 (2011).

Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).

Dudoit, S. & Fridlyand, J. Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19, 1090–1099 (2003).

Strobl, C., Boulesteix, A. L., Zeileis, A. & Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics. 8, 25 (2007).

Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn Res. 3, 1157–1182 (2003).

Vinh, N. X. Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn Res. 11, 2837–2854 (2010).

Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2, 193–218 (1985).

Rosenberg A., Hirschberg J. V-measure: A conditional entropy-based external cluster evaluation measure. In: Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language (EMNLP-CoNLL’07). 2007. p. 410–420.

Sinzig, J., Walter, D. & Doepfner, M. Attention deficit/hyperactivity disorder in children and adolescents With autism spectrum disorder: Symptom or syndrome? J. Atten. Disord. 13, 117–126 (2009).

Leitner, Y. The co-occurrence of autism and attention deficit hyperactivity disorder in children – what do we know? Front Hum. Neurosci. 8, 268 (2014).

Brieber, S. et al. Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder. J. Child Psychol. Psychiatry Allied Discip. 48, 1251–1258 (2007).

Ameis, S. H. Heterogeneity within and between autism spectrum disorder and attention-deficit/hyperactivity disorder - challenge or opportunity? JAMA Psychiatry 47, 1093–1094 (2017).

Bethlehem, R. A. I., Romero-Garcia, R., Mak, E., Bullmore, E. T. & Baron-Cohen, S. Structural covariance networks in children with autism or ADHD. Cereb. Cortex. 27, 4267–4276 (2017).

Di Martino, A. et al. Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol. Psychiatry 74, 623–632 (2013).

Carlisi, C. O. et al. Disorder-specific and shared brain abnormalities during vigilance in autism and obsessive-compulsive disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 2, 644–654 (2017).

Waterhouse, L., London, E. & Gillberg, C. ASD Validity. Rev. J. Autism Dev. Disord. 3, 302–329 (2016).

Müller, R. A. & Amaral, D. G. Editorial: Time to give up on Autism Spectrum Disorder? Autism Res. 10, 10–14 (2017).

London, E. B. Categorical diagnosis: a fatal flaw for autism research? Trends Neurosci. 37, 683–686 (2014).

Karalunas, S. L. et al. Subtyping attention-deficit/hyperactivity disorder using temperament dimensions: toward biologically based nosologic criteria. JAMA Psychiatry 71, 1015–1024 (2014).

Abramovitch, A., Dar, R., Mittelman, A. & Wilhelm, S. Comorbidity between attention deficit/hyperactivity disorder and obsessive-compulsive disorder across the lifespan: a systematic and critical review. Harv. Rev. Psychiatry 23, 245–262 (2015).

Rommelse, N., Buitelaar, J. K. & Hartman, C. A. Structural brain imaging correlates of ASD and ADHD across the lifespan: a hypothesis-generating review on developmental ASD–ADHD subtypes. J. Neural Transm. 124, 259–271 (2017).

Geurts, H. M., Ridderinkhof, K. R. & Scholte, H. S. The relationship between grey-matter and ASD and ADHD traits in typical adults. J. Autism Dev. Disord. 43, 1630–1641 (2013).

Robinson, E. B. et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat. Genet. 48, 552–555 (2016).

Levy, F., Hay, Da, McStephen, M., Wood, C. & Waldman, I. Attention-deficit hyperactivity disorder: a category or a continuum? Genet. Anal. 36, 737–744 (1997).

van der Meer, J. M. J. et al. Homogeneous combinations of ASD–ADHD traits and their cognitive and behavioral correlates in a population-based sample. J. Atten. Disord. 21, 753–763 (2017).

Plomin, R., Haworth, C. M. A. & Davis, O. S. P. Common disorders are quantitative traits. Nat. Rev. Genet. 10, 872–878 (2009).

van Rooij, D. et al. Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: results from the ENIGMA ASD Working Group. Am. J. Psychiatry. 175, 359–369 (2018).

Lim, L. et al. Disorder-specific grey matter deficits in attention deficit hyperactivity disorder relative to autism spectrum disorder. Psychol. Med. 45, 965–976 (2015).

Khundrakpam, B. S., Lewis, J. D., Kostopoulos, P., Carbonell, F. & Evans, A. C. Cortical thickness abnormalities in autism spectrum disorders through late childhood, adolescence, and adulthood: a large-scale MRI study. Cereb. Cortex. 27, 1721–1731 (2017).

Mensen, V. T. et al. Development of cortical thickness and surface area in autism spectrum disorder. NeuroImage Clin. 13, 215–222 (2017).

Smith, E. et al. Cortical thickness change in autism during early childhood. Hum. Brain Mapp. 37, 2616–2629 (2016).

Foster, N. E. V. et al. Structural gray matter differences during childhood development in autism spectrum disorder: a multimetric approach. Pediatr. Neurol. 53, 350–359 (2015).

Liu, J. et al. Gray matter abnormalities in pediatric autism spectrum disorder: a meta-analysis with signed differential mapping. Eur. Child Adolesc. Psychiatry 26, 933–945 (2017).

Shaw, P. et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 63, 540–549 (2006).

Rubia, K., Alegria, A. & Brinson, H. Imaging the ADHD brain: disorder-specificity, medication effects and clinical translation. Expert Rev. Neurotherapeutics. 14, 519–538 (2014).

Cubillo, A., Halari, R., Smith, A., Taylor, E. & Rubia, K. A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with Attention Deficit Hyperactivity Disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex 48, 194–215 (2012).

Bonath, B., Tegelbeckers, J., Wilke, M., Flechtner, H. H. & Krauel, K. Regional gray matter volume differences between adolescents with ADHD and typically developing controls: further evidence for anterior cingulate involvement. J. Atten. Disord. 22, 627–638 (2018).

Hu, X. et al. Meta-analytic investigations of common and distinct grey matter alterations in youths and adults with obsessive-compulsive disorder. Neurosci. Biobehav. Rev. 78, 91–103 (2017).

Dougherty, C. C., Evans, D. W., Myers, S. M., Moore, G. J. & Michael, A. M. A comparison of structural brain imaging findings in autism spectrum disorder and attention-deficit hyperactivity disorder. Neuropsychol. Rev. 26, 25–43 (2016).